(, corelight

THREAT HUNTING GUIDE

How to threat hunt with
Open NDR + MITRE ATT&CK®

http://corelight.com

THREAT HUNTING GUIDE

This Threat Hunting Guide was created to teach you simple
and relevant ways to discover attacks before they happen
using Corelight network data. This document—organized
around the MITRE ATT&CK® framework—is designed

to help you develop a theory for threat hunting and
establish prioritization.

MITRE ATT&CK is a globally-accessible knowledge base

of adversary tactics and techniques based on real-

world observations. It's used as a foundation for specific
threat models and methodologies in the private sector,
government, and the cybersecurity industry. With the
creation of ATT&CK, MITRE is fulfilling its mission to solve
problems for a safer world—by bringing communities
together to develop more effective cybersecurity. ATT&CK is
open and available to any person or organization for use at
no charge."

WHAT IS THREAT HUNTING?

At a high level, threat hunting is actively looking for
adversaries in your network when you don't know if they're
inside. This is different from indicator matching, which is
only watching for well-known signs of attackers, for example,
IP addresses or file hashes. Usually conducting a threat

hunt involves researching a theory, or hunch, and then
analyzing data looking for something interesting. Items that
are interesting can take many shapes, for example in The
Cuckoo’s Egg by Clifford Stoll, an accounting error initiated
the hunt.

"Dave wandered into my office, mumbling about
a hiccup in the Unix accounting system.
Someone must have used a few seconds of
computing time without paying for it. The
computer’s books didn’t quite balance;

last month’s bills of $2,387 showed a

75-cent shortfall."”

This 75-cent difference was the indicator that led to the
discovery of the compromise of multiple corporations
and government systems. The term "interesting" is
used throughout this guide and it is only limited by
your imagination.

WHY CONDUCT A THREAT HUNT?

Most host- or network-based detection systems rely on
matching, otherwise known as signatures, to generate alerts
to signal defenders that there is something unwanted in

(_ corelight

the network. However, attackers are continually evolving to
evade detection, and signatures are developed only after
the artifact was discovered in another network. So, if you're
not hunting for artifacts in your environment, how will you
discover that attackers are evading your current defenses?

Hunting has several positive outcomes. The first is you might
find artifacts of an active intruder that your current defenses
missed. While some may think this is a tragedy, it can be a
huge win, especially if the intruder hasn't completed their
objective(s). In every hunt, there's always something to find.

You may discover network or software misconfigurations
that pose a threat, either because they degrade network
performance or introduce a vulnerability. Next, the hunt
could yield run-of-the-mill infections such as adware, or
other dormant malware that aren't directly targeting your
organization but are still a threat. Lastly, resource abuse
and Shadow IT, services that are not officially supported,
can introduce risk through degraded network performance
or new adversary attack vectors. Every hunt teaches you
something new about the network which will aid in your
next investigation.

WHY HUNT WITH NETWORK DATA?

PACKETS. DON'T. LIE.

It's really as simple as that. If a network-resident intruder

is active in your network, there will be network artifacts. In
artifacts, there are clues to what is happening, or better yet,
an exact moment-for-moment story of what happened. For
example, if a command and control channel uses DNS as a
transport mechanism, there will be DNS queries and replies.
Additionally, the IP address(es) that are on the ends of a TCP
connection must be accurate, they cannot be spoofed if data
is exchanged. All attacks traverse the network, unless they
are isolated to one host, so there will be packets.

CORELIGHT LOGS NOMENCLATURE

Corelight provides data-centric solutions that analyze
network traffic and enhance automation tools by
transforming network traffic into linked logs and extracting
files. The central log is the conn log, which documents
general information about all network sessions.

The conn log records information about each network
endpoint and the service (application) and also assigns a
uid (unique identifier). The uid links the conn log to related

THREAT HUNTING GUIDE

(_ corelight

protocol logs, where specific session information is available. For example, the conn log can list http as the service, and
using the uid you can pivot to the http log to get specific protocol information about the session. The uid separates Corelight
solutions from other security tools. This field links otherwise disparate information into easily digestible logs. The uid is
fundamental to conducting link analysis and a critically important field that facilitates pivoting, or joining multiple logs together.

t metdoto.ip.oddress 208.99.215.182

February Sth 1018, 17:29
1

) ShiueCERU JepRQBo S
_index €l-conn-2018.02.09

O #timestosp

?
g

_score 1

@
It
L
>
o

type bro
& 2018-02-09T01:27:37 .61
conn_stote BSTO

o fen seconds

ShADStR

host 208.99.215.182
i origh 192.168.9.53
\dorigp 2.0

d ok 68.164.182.11
id_resp.p L]

local orig true
local_resp false
missed_bytes »

orig.bytes B16E

erigLip bytes 7

orig.12_sdde

L T I T R - I N I

orig.pkts nz
path conn
port 42,002
proto tep
resp bytes 513,64
resp.cc us
resp.ipbytes 18,402
resp 12 addr TH:S4:2e:9F:10:28
resp pkts w1
sensor L]
t servies http
o Februsry Sth 2018, 17:27

7 tunnel_parents

t type bea
t wid €5 TEad0NTGrh JVAS

t
o
t

t
t
[
t

Bra o s @ s mrm o m e w

» Decument

ERUKpROOCDhLS

Bmetdoto.ip.oddress 208.90.215.182

Stimestomp
#version

-id

index

_score

_type

write_ts

hast

id_orig.h
1d_origp
id_resp_h
id_resp o
method

path

port
request_body_len
resp_filonases
rosp_fuids
respomine_types
response_body_len
sensor
status_code
status_msg

togs
trans_depth

[

type

wid

wri

user_agent

version

February Sth 2018, 17:23:59.882
1

LngueGERU e pROBaDhbE
cl-http-2018.02.03

1

bro

A IO1E-0Z-EOTOL: 2T 326229161
wn . rybusinessdoc . com
192.168.9.53

2,218

65.164.182.11

0

GET

http

41,02

L]

551883236 7e. aif
application/x-dosexec
192,512

Hy

208

o

2
February Sth 218, 17:27:32.618

bro

CLeTEUI0RTCrh NS

fdocument . php Frod=529241d=555552 56011
Mozilla/4.@ (corpotible; MSIE 7.8; Mindo

1.1

Single Document

t Pmetdoto.ip.oddress 205.99.215.182

=]
t

L

t
o
[
]
t
t

#timestaomp
#version

rx_hosts

seen_bytes
sensor

shal

shalé
source
timedout
total_bytes
ts

tx_hasts
type

February Sth 2018, 17:28:39.603

phYEeCEBUlcpROBovaTE
cl-files-2018.2.09

bro
A 2018-02-00T01:27: 12, 6229162
MOS, PR, SHAZSE, SHA1

C5eTEuB0ATGrh jEVNS
]

o fen seconds

S51488323FTe gif

208,90, 215,182

false

falie
€30c2a2adabd S 21 TIOEIAET T el

epplication/s-dosexec

192,512

L]

e2a1911fe2f BE4aT 1816775006007 400 3 301

196c 186005 Co 2 cbF MoARIORL 342 205 4c ¥R 12701 A T4 TSDERC 51 308 TH 5D
WITP

false

192,512

Februery Sth 2018, 17:27:32.610

£8.164,182.11

bro

The information about each network endpoint is summarized by the id field, which is usually represented as

four separate fields:

+ id.orig_h
+ id.orig_p
+ id.resp_h

+ id.resp_p

This nomenclature may seem odd to use, because networking personnel traditionally refer to sessions using client
and server; however, using orig (originator) and resp (responder) allows security personnel to accurately describe
the connection. Think of the originating host (orig_h) as the source, or client, and the responding host (resp_h) as the
destination, or server. The fields id.orig_p and id.resp_p will be populated with the corresponding port numbers.

Many of the remaining fields within the conn log and other protocol logs are self-descriptive, but if you get stuck, look at
the Zeek® documentation at https://docs.zeek.org/en/current/ for more detailed information or visit the Zeek community
Slack channel at https://zeek.org/slack.

https://docs.zeek.org/en/current/
https://zeek.org/slack

THREAT HUNTING GUIDE (_ corelight

IDENTIFYING USERS AND DEVICES

When identifying devices on a network, the IP or MAC addresses are regularly used to create the ‘identity.’ The device IP
address is used more often for the remote identity of a device because it survives router boundaries. When inside a network
segment, the MAC address is preferred for identification because it can be a reliable identifier of a specific machine. Each
identifier has pros and cons, and the ability of Corelight to capture both aids SOC personnel as they investigate events.

While IP addresses are durable? for internal investigations, they often are transient within a network due to most
networks implementing DHCP (Dynamic Host Configuration Protocol). Transient IPs are problematic for defenders when
the IDS alert identifies the session by IP addresses. Those IP addresses are only related to the alert at the time that the
alert was generated.

You can use open source tools when conducting an investigation (e.g., nslookup), to provide DNS information for remote

IPs. However, this is a point-in-time piece of information at the time of the investigation, not when the event occurred. A better
technique is to use logs created at the time of the alert to capture the IP and FQDN (fully qualified domain name) for the remote
device. To locate internal devices, you can mine DHCP logs to identify them. There are multiple ways to identify a host and
Corelight provides this data in multiple logs that each tell a different aspect of the story. Exercise creativity and follow every lead.

Where hostnames can be found:

+ known_names: with the Known Entities package enabled, Corelight sensors collect many of the following sources of
information into one log updated every fifteen minutes. In the known_names log, the hostname field refers to the device
name obtained from the network traffic, the host_ip field refers to the IP address that the name is attributed to, and the
protocols array represents what protocol(s) the hostname was observed from.

+ dhcp: the host_name and domain fields represent the hostname and domain reported by a host when requesting an IP
address via DHCP, and the assigned_addr field is the IP address that was assigned to that host.

+ dns:if there's an IP in the answers field, then the query field contains the hostname that the DNS server recorded (at
that time) for the IP address.

* ntlm: server_dns_computer_name and server_nb_computer_name refer to the DNS and Netbios names of the
machine with the IP address in the id.resp_h field. The hostname field is the hostname of the machine with the IP
address in the id.orig_h field.

+ kerberos: in a Windows environment, for domain-joined devices, Kerberos requests where the client field contains a
name ending in $, the client field is the hostname, and the id.orig_h field is the IP address of that host. The client
field is often structured like HOSTNAMES/EXAMPLEDOMAIN.COM where HOSTNAME is the hostname and EXAMPLEDOMAIN.
COM is the Windows domain name and Kerberos realm name.

+ http: the host field contains the hostname, domain name, or IP address of the HTTP server. Sometimes this field is
an indication of the identity of the server, the device with the IP address in the id.resp_h field, but since this value is
asserted by the client there can be exceptions.

+ ssl: server_name field is extracted from the Server Name Indication (SNI) field in the TLS/SSL negotiation, and is used
similarly to the host field of the http log. Also, the subject field is extracted from the subject of the server certificate,
and the canonical name CN portion of the subject can provide clues to identify a server.

When identifying users, there are several logs that provide valuable information:

* known_users: with the Known Entities package enabled, Corelight sensors collect many of the following sources of
information into one log updated every fifteen minutes. In the known_users log, the host_ip field refers to the origin
host for authentication protocols (e.g. NTLM, Kerberos) and the responding host for remote access protocols (e.g. RDP),
the remote_ip field refers to the IP address at the other end of the connection, and the user field houses the user name.

+ rdp: depending on the version of the RDP protocol, the value of the cookie field is the username asserted by
the client, and the client IP is in the id.orig_h field.3

THREAT HUNTING GUIDE (_ corelight

« ftp: the user field contains the username asserted by the client, and the client IP address will be in the
id.orig_h field.

+ irc: the user field contains the username asserted by the client, and the client IP address will be in the
id.orig_hfield.

+ socks: the user field contains the username asserted by the client, and the client IP address will be in the
id.orig_hfield.

+ http: the username field contains the username asserted by the client, and the client IP address will be in the
id.orig_hfield, or may be indicated in the proxied field if the connection was proxied. If proxied the id.orig_h field
will contain the IP address of the proxy.

+ ntlm: the username field contains the username asserted by the client, and the client IP address will be in the
id.orig_hfield.

+ kerberos: in a Windows environment, kerberos requests contain the username in the client field (except for
requests where the client field contains a name ending in $, which means that the asserting identity is a device, and
the id.orig_h field is the IP address of the source device. The client field will often be structured like USERNAME/
EXAMPLEDOMAIN.COM where USERNAME is the username and EXAMPLEDOMAIN.COM is the Windows domain name and
Kerberos realm name

A few words of warning about drawing conclusions about the identity of a machine or the user of a device: know your
limits (and the limits of the data). Just because a username was recorded in network traffic does not mean that the actual
person with that name is responsible—it is just a clue. You should check to see if the user authenticated successfully, as
state-sponsored cyberspies and saboteurs have increasingly experimented with planting false flags.* The username could
have been asserted, but if the authentication failed, then it is not a clear indicator that the user was involved. Don’t forget
that devices and software may cache credentials, so the user account may be active, but the actual person could still be
innocent. You must continue to collect information before you can confirm nefarious behavior.

For example:
+ Auser goes to lunch and leaves their device unlocked, and someone else uses their machine while the original user is away

+ Adevice is compromised with a Remote Access Trojan (RAT) and a user halfway around the world is surreptitiously
assuming the identity of our victim, while the original user is also using the device simultaneously to conduct
regular business

+ A malicious user within the organization has overheard a coworker saying their password out loud in conversation,
and he or she is now trying to use those credentials to log in to other systems

Also, make sure you understand what pieces of information are controlled and asserted by the clients or servers, and consider
who controls each. If an adversary is inside your network, determining what information is trustworthy is paramount when
preparing the response plan. For example, an intruder could disable DHCP and statically assign an IP address and use it to
navigate the network, making identification difficult, as the DHCP server records would provide conflicting information, or no
information at all. Additionally, when a client requests a DHCP address, an intruder could provide a false MAC address and/or
hostname. Passively capturing point-in-time logs of events will give you your best shot at deciphering what occurred.

INCLUDED QUERIES

This guide includes sample queries to jump-start your threat hunting exercises. They are written for Corelight
Investigator using the LogScale Query language (LQL), and should be usable in Investigator, any LogScale instance,
or any LQL-compatible system that has Corelight data in it. To try a query out, simply copy it, paste and go!

INDEX OF TTPS

INITIAL ACCESS

Drive-By COMPromMISEccoeireirreiiriiirineeeeceeesneesneesnenes 7
External Remote Servicesineneneneneieeeeeeeeseseniens 8
Spearphishing Attachment........cocovevevenenenenenceceeee, 12
Spearphishing LinK ... 15
EXECUTION

Command Line Interface, PowerShell......cccvevvveeeeiveeenenns 16
PERSISTENCE

BITS JODS ittt 17
External REMOLE SErViCeScoevveereierieririeirieisieeeieeeienens 19
POrt KNOCKING...c.eiieiieiereniinieriestesesese et 19
Server Software Component: Web Shellccccoevevveennnne. 19

DEFENSE EVASION

BITS JODS ..o 22
POrt KNOCKING...c.iiiiiririeriirertsesesese st 22
Install ROOt CertifiCate....cooenerrereneereeeeeeeeeeeeeeeees 22
CREDENTIAL ACCESS

Brute FOICe. ..ottt 23
Forced AuthentiCationcccceeereeneenenenennceeeseceienens 25
NetWork SNIiffiNg....cccoeeveneirererereseeeeeeee 28
DISCOVERY

Network Service DiSCOVEIY......cirernererienenieeeeesieenienens 28
Network Share DiSCOVEIY ...c.cocireereienieenieeneeeieesieeeienens 30
Network SNiffiNg.....ccoeeveineirierereeseeeeeeeee 30
Remote System DiSCOVEIYccvirirenenenienieeeeeeeeeeeveenenne 30

LATERAL MOVEMENT

Remote Desktop ProtoCol.....c.ccveceveenierenienincineireceienns 30
Exploitation of Remote Services.......ccouvvverieeneeneeeneene. 30
Windows Admin SNares.......cceeeeeeiineneseseseseeeeeee s 34
COLLECTION

Archive Collected Datacccveereeeeereecreceereceeereeeeeee v 35
Automated ColleCtion.....cccceeevieeeeeeeeeeee e 37
Data from Network Shared Drive.......cccocevevievievreveeeeeenens 37

COMMAND AND CONTROL

Data Obfuscation: Protocol or Service Impersonation,

NoN-Standard POItSccccvecrecnenninieseeeeeeeeeeenee 39
Encrypted Channel....... et 40
Fallback Channels, Multi-Stage Channels..........ccccccecevveunee. 40
INgress TOOl TranSTer ..o 41
Non-Application Layer Protocol........cccoeevevneninenenencnenens 44
PIOXY cooeeeiieiereeertetetee e 45
WED SEIVICe ..ottt 47
EXFILTRATION

Automated EXfiltration.......c.ccveveneineenieeneeneeneeneeeene 48
Data Transfer Size LimitS.....ccoeeeenreeennneecenenerecenenne 48

THREAT HUNTING GUIDE (_ corelight

HOW TO HUNT FOR SPECIFIC TTPs

INITIAL ACCESS (TA0001)

Initial access is when intruders establish their initial foothold.

Drive-By Compromise (T1189)

A drive-by compromise usually results when a file is surreptitiously downloaded from a website that is compromised.
When you hunt for signs of drive-by compromise in Corelight data, your main focus is downloads from external websites.
Begin the hunt with the http log and look for signs of downloaded executables:

1. Startwith http logs where resp_fuids is not empty. This means there was a file returned from the responder.

2. Ifthe data volume is too large, filter out local (in-network) responders. You can filter by joining the results to the conn
log on the uid, then filtering out any records in which local_resp is true in the conn log.

3. Review the resp_mime_types from the http log, and filter uninteresting results (e.g., images, text, OCSP responses,
and certificates). Often the most interesting results are executables, DLLs, and archives/containers

4. Group the results by the host and resp_mime_types fields for easy analysis.

Scan through the results and look for anything interesting or odd, such as downloads of executable files, or file extension
and mime-type mismatch.

As more attackers move to using TLS to encrypt exchanges between compromised clients and websites they control, there

will be less visibility via the http log. To regain this visibility, consider using an enterprise SSL decryption solution and
passing the decrypted HTTP traffic to your Corelight Sensor.

EXECUTABLE DOWNLOAD DIRECTLY FROM IP

(#path="http" or #path="http_red")
| host = /[0-9]{1,3}$/

| in(uri, values=["*.apm", "*.app", "*.appref-ms", "*.bas", "*.bat", "*.chi", "*.chm", "*.chq",
ll*.chwll' Il*.dllll' II*.eerI' "*.gadget", ”*.hta"' ll*.infll' ll*.jarll' Il*.jnlpll' Il*.jsell’ II*.lnkll'
"*.mde", "*.mht", "*.msi", "*.msix", "*.msixbundle"”, "*.pif", "*.pkg", "*.pl", "*.ps1",

"% psixml”, "*.ps2", "*.ps2xml", "*.psc1", "*.psc2", "*.psd1”, "*.psd1”, "*.psdm1”, "*.psm1",
"*.py", "*.pyc", "*.pyo", "*.pyw", "*.pyz", "*.reg", "*.scr", "*.sct", "*.vbe", "*.vbs", "*.ws",
"*.wsb", "*.wsc", "*.wsf", "*.xpi", "*.xz", "*.z", "*.zip", "*.zipx"])

| split(resp_mime_types)

| groupby([id.orig_h, id.resp_h, host, method, uri, status_code], function=collect(
resp_mime_types, limit=5))

THREAT HUNTING GUIDE (_ corelight

POSSIBLE WINDOWS EXECUTABLE DOWNLOAD WITHOUT MATCHING MIME TYPE

(#path="http" or #path="http_red")

| ! (uri="*.exe" or uri="*.d11l" or uri="*.msi")

| split(resp_mime_types)

| in(resp_mime_types, values=|[
"application/java-archive",

"application/mshelp”,

"application/chrome-ext",

"application/x-object"”,
"application/x-executable”,
"application/x-dosexec",
"application/x-msdownload",
"application/vnd.microsoft.portable-executable"])
| groupby([id.orig_h, id.resp_h, id.resp_p, host, method, uri, status_code],
function=collect(resp_mime_types, limit=5))

DOWNLOAD OF FILE FROM INTERNET (OVERVIEW QUERY)

definetable({(#path=conn or #path=conn_red) local_resp=false local_orig=true
service="*http*"}, name=outbound_conns, include=uid)

| (#path=http or #path=http_red) status_code=200 resp_mime_types[0]=*

| match(file=outbound_conns, field=uid)

| split(resp_mime_types)

| 'in(field=resp_mime_types, values=["text/*", "image/*", "application/xml",
"application/font", "video/*", "application/ocsp-response”, "application/pgp-signature"”,
"application/pdf", "application/vnd.ms-opentype", "application/x-font"])

| groupby([id.orig_h, id.resp_h, id.resp_p, host, method, uri, status_code],
function=collect(resp_mime_types, limit=5))

External Remote Services (T1133)

External remote services are used by adversaries to connect to internal network resources, and hunting for misuse of
remote services usually involves two steps: discovery, and analysis. First, you must discover what remote services are in use.
Asset and service inventory information should be collected first, but usually it's insufficient. Often, there is natural "drift"
as IT teams make changes to infrastructure and struggle to keep asset documentation current. Empowered users make this
more difficult by setting up assets and services without involving or informing IT, a process known as "shadow IT."

Traditional remote services, for example: RDP, VNC (remote framebuffer), and SSH (secure shell) contain a server
component and a client component. If you have a remote service hosted in your environment, attackers can exploit
externally accessible services to compromise machines inside the network. To identify these services, look for conn log
entries in which the service field contains rfb, rdp, or ssh, and where local_origis false and local_resp is true,
or where the originator IP (id.orig_h) is external and the responder IP (id.resp_h) is on the organization network. Make
note of any RFB/VNC, RDP, or SSH servers that are accepting connections from the internet.

THREAT HUNTING GUIDE (_ corelight

Some remote services work in reverse, where an agent is installed on the local device, and it reaches outward from inside
the network to a set of external servers, for example, GoToMyPC and TeamViewer. This configuration is designed to
assist users (primarily home users) who don’t control the NAT or the firewall or aren’t sophisticated enough to be able to
manage port forwarding or firewall rule management.

To discover if these remote services are in use in your environment, look for signs of outbound connections to the
services. For example, TeamViewer uses TCP port 5938 to communicate with TeamViewer servers, so simply review the
conn logs for connections where the id.resp_p is 5938 and local_origis true and local_resp is false. TeamViewer
also uses SSL, and the domain name of the connections should be *.teamviewer.com, so additionally you can look for
entries in the ssl log in which the server_name contains, or better yet ends with, teamviewer.com. (Note: because

this session works in reverse, the id.orig_h is the device in your network that has the TeamViewer client installed.)

Our second example, GoToMyPC, attempts to contact poll.gotomypc.com. Examine the http log host field for poll.
gotomypc.com, or entries in the ssl log in which the server_name is poll.gotomypc.com. For each client software
package, the list of ports and domain names varies.

Now that we've discussed the discovery of remote services, you should compare Corelight data to a list of all remote
services that the IT department offers, such as:

* RDP Gateways
+ VDI (Virtual Desktop Infrastructure) Gateways
* VPN (Virtual Private Network) Gateways

* SSH Servers

For each service exposed to the internet, aggregate a list of connections to that service from the conn log, and include the
following fields:

+ id.orig_h: Origin IP address (client)

+ id.resp_h: Responder IP address (server)

+ 1id.resp_p: Responder port

+ service: the application protocol that Corelight detected

+ history: the history of the connection, e.g. what types of TCP flags were seen

* orig_cc: The originator's country code

When filtering logs, ensure the history field starts with Sh. For TCP connections this means that the originator sent a
SYN, and the responder replied with a SYNACK (handshake). This check eliminates connections where the server is not
listening, or there is a firewall blocking the connection.

After you have gathered all the data, begin sifting through the logs for anything interesting, such as a connection from a
country that is not expected. Use the UID from the conn log to follow-up with the application-specific Corelight logs (rdp,
rfb, ssh). For example, the rdp log contains more details about the connection, such as the cookie field that can contain
the username of the authenticating user. The last step is to check with the user to determine whether they were actively
using the system at that time.

THREAT HUNTING GUIDE (_ corelight

Corelight customers have access to the Encrypted Traffic Collection (ETC) that generates inferences, or insights, about
encrypted traffic. The ssh log contains interesting information inferred about the SSH connection, such as:

KS for connections that appear to contain client keystrokes
FU and FD for connections which appear to contain a file upload or download, respectively
ABP for connections which appear not to contain any authentication, but still are successful ("authentication bypass")

SV or SC for clients that appear to be version or capability scanning, respectively

If you'd like to learn more about the Corelight ETC, please contact our sales team at (510) 281-0760.

RDP SCANNING POTENTIAL BRUTE FORCE COMMON USER NAMES

#path="rdp" | lowercase(cookie)
| in(field=cookie, values=["root", "administr", "admin", "guest", "info", "test", "adm",
lluserll, Ildall, Illocalll' Illetmeinll' "Service"' II.II' Ilcomputerll' IIXXXII, II/II, Il\\ll])

| groupby(field=id.orig_h, function=[collect(cookie, 1limit=10), count(field=cookie,
distinct=true, as=val)])
| val > 2

RESPONSE FROM EXTERNAL FACING SERVICE (OVERVIEW QUERY)

(#path="conn" or #path="conn_red") local_orig="false" local_resp="true" history="Sh*"
| splitString(field=service, by=",") | split(service)
| groupby(id.resp_h, function=[collect(service, limit=10), count(id.orig_h, distinct=true,

as="#_clients"), count()])

EXTERNAL FACING ICS MODBUS

(#path=conn or #path=conn_red) service="*modbus*" local_orig=false local_resp=true
| groupby([service, id.resp_h, id.resp_p], function=[count(id.orig_h, distinct=true,
as="#_clients"), count()])

https://corelight.com/products/analytics/encrypted-traffic

THREAT HUNTING GUIDE (_ corelight

EXTERNAL FACING ICS DNP3
(#path=conn or #path=conn_red) service="*dnp3*" local_orig=false local_resp=true

| groupby([id.resp_h, id.resp_p], function=[collect(service, limit=10), count(id.orig_h,
distinct=true, as="#_clients"), count()])

UNCOMMON EXTERNAL FACING APPLICATION SERVICE

(#path="conn" or #path="conn_red") history="Sh*"
| local_orig="false" local_resp="true"

| in(field=service, values=["*dce_rpc*", "*dnp3*", "*gssapi*", "*krb_tcp*", "*krb_udp*",
"*krb*", "*modbus*", "*ntlm*", "*radius*", "*rdp*", "*rdpeudp*", "*rpc*", "*smb*", "*snmp*",
"*syslog*"])

| splitString(field=service, by=",", as="service") | split(service)

| groupby([id.resp_h, id.resp_p], function=[collect(service, limit=10), count(id.orig_h,
distinct=true, as="#_clients"), count()])

INBOUND RDP FROM INTERNET

(#path="conn" or #path="conn_red") history="Sh*"

local_orig=false local_resp=true service="*rdp*"

| splitString(field=service, by=",", as=service) | split(service)

| groupby([id.resp_h, id.resp_p], function=[collect(service, limit=10), count(id.orig_h,

distinct=true, as="#_clients"), count()])

INBOUND SSH FROM INTERNET

(#path="conn" or #path="conn_red") history="Sh*"

local_orig=false local_resp=true service="*ssh*"

| splitString(field=service, by=",", as=service) | split(service)

| groupby([id.resp_h, id.resp_p], function=[collect(service, limit=10), count(id.orig_h,

distinct=true, as="#_clients"), count()])

THREAT HUNTING GUIDE (_ corelight

OUTBOUND CONNECTION ON KNOWN TEAMVIEWER PORT 5938

(#path="conn" or #path="conn_red") local_orig=true local_resp=false id.resp_p=5938
| groupby([id.orig_h, id.resp_p], function=[collect(history, limit=5), collect(id.resp_h,
limit=5), count()])

SSL SNI INVOLVES TEAMVIEWER

(#path="ssl" or #path="ssl_red") (server_name=*.teamviewer.com or server_name=teamviewer.com)
| groupby([id.orig_h, id.resp_p], function=[collect(server_name, limit=5), collect(id.resp_h,
limit=5), count()])

SSL SNI INVOLVES GOTOMYPC

(#path="ssl" or #path="_red") (server_name=*.poll.gotomypc.com or
server_name=poll.gotomypc.com)

| groupby([id.orig_h, id.resp_p], function=[collect(server_name, limit=5), collect(id.resp_h,
limit=5), count()])

Spearphishing Attachment (T1566.001)

As a method of entry into an organization, an adversary may send a well-crafted malicious attachment to an individual

or a small group in a spearphishing campaign. The attachment could be a document that instructs the user to take some
action, such as clicking a link and/or logging in to a portal; or it could be a file crafted to exploit a vulnerability in the
software used to open it, such as Adobe Acrobat or Microsoft Word. The Corelight smtp log contains records in the fuids
field if there were any files attached to a message delivered over SMTP. This field can be used to pivot to the files log which
contains detailed information about the file including filename, hashes, and the source.

THREAT HUNTING GUIDE

For example, examine this sample log below.

To hunt for potential spearphish attempts, you can search in the files log:

1.
2.
3.

path: smtp

from: Your Friend <Jeremy.Rigeur@gmail.com>
fuids: ["Fh5GBc1wdVp3x9MKxc"]

mailfrom: attacker@fake-mail.com

rcptto: ["victim@corp-mail.com"]

subject: Definitely not a spear-phish

to: ["victim@corp-mail.com"]

uid: CzKseq1Y3zo2qsTYH5

user_agent: Apple Mail (2.3608.80.23.2.2)

path: files

conn_uids: ["CzKseq1Y3z02qsTYH5" |
filename: WIRE_FRAUD.pdf

fuid: Fh5GBc1wdVp3x9MKxc

md5: e71c36cddd2aa42670d89d63e653d1da
mime_type: application/pdf

shal: bb24829556c0ca17db73d80a1d2f969e3b06ff5f

source: SMTP

The value in the source field is SMTP.

Filter out any uninteresting mime_type and/or filename values, as previously mentioned.

(_ corelight

Use the hash (MD5, SHAT1, or SHA256) with a file reputation service (such as Virustotal) to look for known malicious files.

Additionally, you may start from the smtp log:

—_

S

To reduce the data look for entries where the fuids field is non-empty.

Filter out known good combinations of mailfrom and from values.

Filter out uninteresting subject values.

Consider using the fuid value from the remaining records to pivot to the files log to get more information about the file.

Corelight can perform high-speed file extraction and can filter based on MIME type, so any interesting files, such as

executables, Office documents, and PDFs are available for more scrutiny if desired.

Much of the mail that crosses the internet today is encrypted via STARTTLS over the SMTP protocol, and this hinders
visibility. To achieve better visibility without sacrificing privacy and security for your users, it is a best practice to accept
inbound SMTP at a system that supports STARTTLS, then proxy the mail to the internal mail system, so that Corelight can
generate the corresponding logs.

THREAT HUNTING GUIDE (_ corelight

POTENTIALLY HARMFUL ATTACHMENT

(#path="files" or #path="files_red") source="SMTP"
| in(field=filename, values=[

"*.7z", "*.ace", "*.apm", "*.app", "*.appref-ms”, "*.arj",
"*.asp"”, "*.bas", "*.bat", "*.bz2", "*.bzip2", "*.cab", "*.cdxml",
"*.cer", "*.chi", "*.chm", "*.chq", "*.chw", "*.class", "*.cmd",
"*.cnt", "*.com", "*.cpl", "*.crt", "*.doc", "*.docm", "*.epub”,
"*.exe", "*.gadget", "*.gz", "*.gzip", "*.hta", "*.img", "*.inf",
"*.ins", "*.ins", "*.iso", "*.isp", "*.isp", "*.jar", "*.jar",
"*.jnlp", "*.jse", "*.1lnk", "*.1zh", "*.mde", "*.mht", "*.msi",

"* msix", "*.msixbundle"”, "*.ods", "*.odt", "*.pif", "*.pkg",
" pl", "*.ps1", "*.psixml", "*.ps2", "*.ps2xml", "*.psc1”,

"% psc2", "*.psd1”, "*.psd1”, "*.psdm1”, "*.psm1”, "*.pssc",
"* py", "*.pyc", "*.pyo", "*.pyw", "*.pyz", "* pyzw", "*.r01",

"*.r14", "*.r18", "*.r25", "*.rar", "*.reg", "*.scr", "*.sct",
"*.shb", "*.sys", "*.tar", "*.taz", "*.tbz", "*.tbz2", "*.tgz",
"*. txz", "*.udl", "*.vbe", "*.vbs", "*.ws", "*.wsb", "*.wsc",
"*wsf", "*.xbap", "*.x1s", "*.xlsm", "*.xpi", "*.xz", "*.z",
"*, zipx"])

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, mime_type, filename],
limit=10)])

POSSIBLE TYPO SQUATTING OR PUNYCODE PHISHING HTTP REQUEST

(#path="http" or #path="http_red") method="GET" !(referrer="*") host="*xn--*"
| groupby([id.resp_h, id.resp_p], function=[collect([id.orig_h, method, status_code, host,
uri, user_agent], limit=10), count()])

FILES AS SMTP ATTACHMENTS (OVERVIEW QUERY)

(#path="files" or #path="files_red") source="SMTP"

| 'in(mime_type, values=|[
"text/*", "image/*", "application/xml", "application/font",
"video/*", "application/ocsp-response”, "application/pgp-signature”,
"application/vnd.ms-opentype”, "application/x-font"

1)

| groupby([id.orig_h, id.resp_h, id.resp_p, mime_type, filename, md5])

THREAT HUNTING GUIDE (_ corelight

Spearphishing Link (T1566.002)

Instead of sending files into an organization where they can be scrutinized by a corporate mail filter, some adversaries
send emails that only contain links. These links lead to websites that are controlled by the attacker, and attempt to dupe
the user into:

+ Entering credentials that the attackers harvest
+ Exploiting a vulnerability in the user’s browser

+ Downloading a file to exploit another application on the user’s device

Corelight Sensors have a package® that can log links from SMTP messages into a separate log, the smtp_links log. This
log contains a fuid field, which links the smtp_links log to the smtp log. You can quickly pivot to the smtp log with the
details about the message that delivered the malicious link. For example, see the log examples.

path: smtp_links

fuid: FhahXAleJ32gHvNP27

id.orig_h: 172.16.0.10

id.orig_p: 62345

id.resp_h: 10.0.1.10

id.resp_p: 25,

link: http://www.hamsterwaffle.com/dl.php?id=jimmydean37
uid: C62tx01FHoJFJpsgP1

path: smtp

from: Your Friend <Jeremy.Rigeur@gmail.com>
fuids: ["FhahXAleJ32gHvNP27" |

mailfrom: attacker@fake-mail.com

rcptto: ["victim@corp-mail.com"]

subject: Click this link, please

to: ["victim@corp-mail.com"]

uid: C62tx01FHoJFJpsgP1

user_agent: Apple Mail (2.3608.80.23.2.2)

To hunt for spearphishing links, start with the smtp_links log and review the 1ink field, filtering out benign domains until
you find interesting results. Another option is to join the smtp_links log to the smtp log via the fuids or uid field, and filter
out benign combinations of mailfrom and from fields to look for messages from unique senders.

Much of the mail that crosses the internet today is encrypted via STARTTLS over SMTP. To achieve better visibility without
sacrificing privacy and security for your users, it is a best practice to accept inbound SMTP at a system that supports
STARTTLS, then proxy the mail to the internal mail system, so that a Corelight solution can generate the corresponding logs.

THREAT HUNTING GUIDE (_ corelight

SMTP EMAIL CONTAINING NON ASCII CHARACTERS WITHIN THE SUBJECT

(#path="smtp" subject=/*.*[*\x00-\Xx7F].*$/

MULTIPLE CLIENTS TO HTTP USING UNICODE HOST VIA HTTP - POSSIBLE MULTIPLE
PHISHING ATTEMPTS

(#path="http" or #path="http_red") (method="POST" or method="PUT")

| Y(referrer="*") !(uri="/") host="#*xn--*"

| groupby(field=id.orig_h, function=[collect(host, limit=5), count(field=uri, distinct=true,
as=val)])

| val >10

LINKS IN SMTP MESSAGES (OVERVIEW QUERY)

#path=smtp_links
| groupby([id.orig_h, domain], function=[collect(link, limit=18), count()])

EXECUTION (TA0002)

The adversary is trying to run malicious code.

Command and Scripting Interpreter: PowerShell (T1059.001)

Command line interface scripting has long been used to manage *nix-based systems, and the ability to build and execute
scripts is often exploited by attackers. For years there was no equivalent available on Windows, and in the early 2000s
Microsoft began development of a new approach to command line management. Soon thereafter, PowerShell (PS) 1.0
was created. PS, in its various iterations, is a built-in tool based on the .NET framework that’s used to automate system
administration tasks. It provides an interface for users to access services of the Windows operating system.

Although certain PS commands are restricted by default, many commands are available to obtain system information
without an executable file. Adversaries use LNK files to bypass safeguards and execute a PS script. LNK files are usually
seen as shortcuts, generally found on users’ Desktop and Start Menu.

THREAT HUNTING GUIDE (_ corelight

Malicious LNK files are often embedded within what appears to be legitimate documents or pictures. Once opened,

the LNK executes a legitimate windows application CMD.exe or MSHTA.exe to bypass security settings. Corelight’s file
extraction capabilities and integration with various intel platforms provide insight into malware obfuscated by file type.
By utilizing Corelight’s built-in filtering, you can tune the file extraction parameters to target specific mime-types that are
commonly used for malware delivery, including:

+ Compressed files
* Microsoft Office (Word, PowerPoint, etc)
+ PDFfiles

* TXT files (PowerShell, VBS)

LNK FILE DOWNLOAD OR USAGE OVER HTTP

(#path="http" or #path="http_red") method="GET" !(referrer="*")

| in(uri, values=["#*.lnk", "*.LNK", "*.inf", "*.INF"])

| groupby([id.resp_h, id.resp_p], function=[collect(id.orig_h, limit=10), collect(host,
limit=10), collect(uri, limit=10), collect(status_code, limit=10)])

LNK FILE DOWNLOAD OR USAGE OVER SMB (OVERVIEW QUERY)

#path=smb_files
| in(field=name, values=["*.1lnk", "*.LNK", "*.inf", "*.INF"])
| groupby([id.orig_h, id.resp_h, name], function=collect(action, limit=10))

PERSISTENCE (TA0003)

Persistence is the adversary trying to maintain their foothold.

BITS Jobs (T1197

Microsoft Background Intelligent Transfer Service (BITS) was created in 2001 as a mechanism for managing file transfers
that minimize disruption to the end user. BITS is commonly used to download Windows updates and other software
updates from major vendors.

Attackers have two methods of abusing BITS:

+ The most common is to create a BITS transfer job directly on a host, allowing a download of secondary payloads
through a built-in Windows service that typically bypasses firewalls and other security controls.

+ Another alternative is to exfiltrate data through a BITS upload job. Uploads must connect to an IIS server for BITS to
function properly, but this requirement is trivial for malware authors to subvert.

THREAT HUNTING GUIDE (_ corelight

Data transfers using the BITS service can take place over HTTP, SSL, and SMB. When BITS uses HTTP traffic, thereis a
distinctive User-Agent string of "Microsoft BITS/7.5" (or 7.8 in later versions). Unfortunately, there are no distinguishing
characteristics of BITS SSL and SMB network traffic. Therefore, the presence of BITS network traffic is not necessarily
suspicious, because it is present anywhere Windows machines are connected to the internet. Analysts still can use
Corelight data to assess if the BITS traffic is legitimate by analyzing remote systems being used for BITS data transfers.
If they are outside of CDNs or major software providers’ networks, all BITS uploads should be investigated until proven
benign, as this use case is especially rare among legitimate software vendors.

The code sample below is an http log showing what the BITS data looks like if it is over HTTP.

_path: http

uid: Ca9LrF3x15kVCxe2K4

id.orig_h: 10.10.199.31

id.orig_p: 49987

id.resp_h: 151.205.0.135

id.resp_p: 80

trans_depth: 1

method: GET

host: 151.205.0.135

uri: /pdata/0731497c8faldce5/download.windowsupdate.com/d/msdownload/update/software/
secu/2018/05/windows10.0-kb4103723-x64_0722ab30824410046f954417ada8556d2ac308a6.cab
version: 1.1

user_agent: Microsoft BITS/7.8

request_body_len: ©

response_body_len: 1333068983

status_code: 200

status_msg: OK

resp_fuids: FD283F3hrZH8yzYmb8

resp_filenames: windows10.0-kb4103723-x64_0722ab308244100461954417ada8556d2ac308a6.cab
resp_mime_types: ["application/vnd.ms-cab-compressed"]

accept_encoding: identity

accept: */*

MICROSOFT BITS LEAVING THE NETWORK

definetable({#path=conn service=/http/}, include=[id.orig_h, local_orig],
name=orig_locality)

| definetable({#path=conn service=/http/}, include=[id.resp_h, local_resp],
name=resp_locality)

| #path=http user_agent=/microsoft bits/i

| match(file=orig_locality, field=id.orig_h, include=local_orig)

| match(file=resp_locality, field=id.resp_h, include=local_resp)

| local_orig=true local_resp=false

| groupby([id.orig_h, id.resp_h, id.resp_p, host, query, user_agent])

THREAT HUNTING GUIDE (_ corelight

External Remote Services
See Initial Access: External Remote Services

Traffic Signaling: Port Knocking (T1205.001)

Port knocking is a technique to get a remote system to enable access to an otherwise closed port. It typically consists of
a pre-defined sequence of connections to other (often closed) ports, sometimes with special protocol-level flags, Layer 7
banner strings, etc.

Corelight summarizes each TCP, UDP, and ICMP connection in the conn log. This detailed log provides useful statistics
about connections. The history, conn_state, and network tuple (src/dest ip/port) fields provide the information
necessary to sight port knocking. It is important to note that sighting port knocking without an additional hint can be a
daunting task, as it is easy to hide intentional sequences of connections among the noise of a typical network.

Server Software Component: Web Shell (T1505.003)

A web shell is a web-based implementation of a command shell. A web shell is generally a malicious web page or code
snippet introduced into an existing web server or application to provide unauthorized access. This access can be an actual
CLI shell, file management, or database access tool. This is a common tactic used by web shells that includes blending
malicious traffic with benign traffic to/from the web server, making it difficult to identify via IDS signatures due to the ease
of changing specific web shell characteristics.

When a web shell executes, it runs with limited web server software user permissions. Attackers often use web shells to
attempt privilege escalation attacks by exploiting local vulnerabilities on the system to assume root privileges.

Detecting web shells on the network using signature-based detections is relatively straightforward, as web shells have
specific file paths, communication methods, or other behaviors that can trigger an alert. However, like most ‘atomic’ |OCs,
they are easy to evade because they identify specific behaviors that can easily be changed. Therefore, it is recommended
to supplement signature detection with a threat hunting program to find more general behaviors of anomalous activity.

Web shells attempt to hide malicious activity in normal HTTP traffic, making the http log an excellent data source for
investigating web shell activity. Examples of hunt hypotheses supported by Corelight HTTP data are:

« Unusual HTTP POST activity. This may be as simple as unexpected HTTP POSTs in the method field of the http log
where GETs are expected (if the affected site is primarily serving content).

+ ‘Normal’ web traffic travels to a shortlist of common pages, with navigation via an internal hyperlink. A web shell goes
directly to the hidden page and appears as an HTTP request with no referring page. Additionally, web traffic shows a
variety of requesting IPs, user-agent strings, JA3s, etc. A web shell can have a more homogenous group of users.

+ Ferreting out suspicious logins originating from internal subnets to DMZ servers and vice versa.

This type of hunt analysis and anomaly detection is an effective way to identify malicious (or suspicious) activity, but
modern networks are noisy, chaotic places. As with most hunts, you must know what ‘'normal’ data looks like so that you
can successfully filter it out.

For more information about preventing and detecting web shells, visit the NSA's guidance at
https://github.com/nsacyber/Mitigating-Web-Shells.

https://github.com/nsacyber/Mitigating-Web-Shells

THREAT HUNTING GUIDE (_ corelight

POSSIBLE WEBSHELL PUT OR POST TO UNUSUAL EXTENSIONS

(#path="http" or #path="http_red") and (method="POST" or method="PUT") status_code="2*"
I(request_body_len="0" or response_body_len="0")
| in(uri, values=|[

"*.jpg", "*.jpeg"”, "*.gif", "*.png", "*.icon", "*.ico",

"*.xml", "*.swf", "*.svg", "*.ppt", "*.pttx", "*.doc", "*.docx", "*.rtf",

"k pdf", "x.tif", "*.zip", "*.mov"
)]
| format("%,.30s", field=post_body, as=post_body)
| split(resp_mime_types)
| groupby([id.orig_h, id.resp_h, id.resp_p, host], function=[collect(method, limit=10),
collect(uri, 1limit=5), collect(post_body, limit=5), collect(resp_mime_types, limit=5),
collect(status_code, limit=5)])

POSSIBLE WEBSHELL - RARE PUT OR POST BY IP

(#path="http" or #path="http_red") (method="POST" or method="PUT") !(status_code="4%*")
| in(uri, values=|[

"% aspx”, "*.aspx?", "*.asp", "*.asp?", "*.php", "*.php?", "*.jsp",
"*.jsp?", "*.jspx", "*.jspx?", "*.war", "*.war?", "*.ashx", "*.ashx?",
"* asmx", "*.asmx?", "*.ascx", "*.ascx?", "*.asx",

"x asx?", "*.cshtml", "*.cshtml?", "*.cfm", "*.cfm?",

"*.cfc", "*.cfc?", "*.cfml", "*.cfml?", "*.wss", "*.wss?",

"*.do", "*.do?", "*.action", "*.action?", "*.pl", "*.pl?",

"kplx”, "%.plx?", "k.pm", "%.pm2", "*.xs", "#.xs?", "%.t",

"*.E2?", "*.pod”, "*.pod?", "*.php-s", "*.php-s?",
"*.pht", "*.pht?", "*.phar", "*.phar?", "*.phps",
"* . phps?", "*.php7", "*.php7?", "*.php5", "*.php5?",
"*x php4", "*.php4?", "*.php3", "*.php3?", "*.phtml", "*.phtml?",
"* py", "*.py?", "*.rb", "*.rb?", "*.rhtml", "*.rhtml?",
"*.cgi", "*.cgi?", "*.d1l1l", "*.d11?", "*.ayws", "*.ayws?",
"*.erb", "*.erb?", "*.rjs", "*.rjs?",
"* hta", "*.hta?", "*.htc", "*.htc?", "*.cs", "*.cs?", "*.kt",
"x kt?", "*.lua", "*.lua?", "*.vbhtml", "*.vbhtml?"
1)
| groupby(field=uri, function=[collect(host, limit=5), count(field=id.orig_h, distinct=true,
as="#_clients")])
| "#_clients" < 3

20

THREAT HUNTING GUIDE (_ corelight

POSSIBLE WEBSHELL - DIRTY WORD LIST

(#path="http" or #path="http_red") !(status_code="4*") (method="POST" or method="PUT")
| in(uri, values=|[

"*pwned*", "*owned*", "*backdoor*", "*spy*",6 "*bypass*", "*root*",

"*reot*", "*pOwn*", "*robots*", "*hidden*", "*shell*", "*crap*",

"*telnet*", "*hidden*", "*predator*", "*safe_mode*", "*cfexec*",

"*botp*", "*zer@*", "*mysql_*", "*oracle_*", "*perlbot*", "*.aspx",

".asp”, "*.php", "*.jsp", "*.jspx", "*.war", "*.ashx", "*.asmx", "*.ascx",
"*.asx", "*.cshtml", "*.cfm", "*.cfc", "*.cfml", "*.wss", "*.do",
"*.action"’ ll*.plll' II*.plxll' ll*.pmll' "*.XS"' "*.t"' Il*.podll'

"* php-s", "*.pht", "*.phar", "*.phps", "*.php7", "*.php5",
"* php4", "*.php3", "*.phtml", "*.py", "*.rb", "*.rhtml", "*.cgi",
"*.dll", "*.ayws", "*.cgi", "*.erb", "*.rjs", "*.hta", "*.htc",
"*.cs", "*.kt", "*.lua", "*.vbhtml"
1)
| format("%,.30s", field=post_body, as=post_body)
| groupby(field=[id.orig_h, id.resp_h, id.resp_p, host], function=[collect(uri, limit=10),
collect(method, 1limit=10), collect(post_body, limit=5)])

POSSIBLE DIRECTORY TRAVERSAL WEB SERVER ATTACK

(#path="http" or #path=http_red) !(response_body_len="0" or uri="/")

I(status_code="3*" or status_code="4*")
(post_body=/([.]|%2e|%252e|%u002e|%c0%2e|%e0%40%ae|%cOae)
([-11%2e|%252e|%uB02e|%cB%2e | %e0%40%ae|%cBae) ((\\|%5¢c|%255¢|%u2216|%cB%5¢c|%c8%80%5¢) | (\/|%2f|
%252f|%25252f | %c0%af|%e0%80%af|%c0%2f|%u2215))([.]|%2e|%252¢e|%u002e|%cO%2e|%e0%40%ae |%cOae)
([.11%2e|%252e|%uB02e|%c0%2e | %e0%40%ae | %cBae)|([.]|%2e]|%252¢e|%u0082e |%cO%2e | %e0%40%ae |%cOae)
([.]11%2e|%252e|%uB82¢e | %cB%2e | %e0%40%ae | %cBae) ((\\|%5¢|%255¢ | %u2216|%c0%5¢|%c0%80%5¢) | (\/]|%2f|%2
52f|%25252F | %c0%af|%e0%80%af |%c0%2f|%u2215)) ([a-zA-Z_\s]{4,})/i

or uri=/([.]|%2e|%252e|%u002e|%c0%2e|%e0%40%ae|%cOae)
([-11%2e|%252e|%uB02e|%cB%2e | %e0%40%ae|%cBae) ((\\|%5¢c|%255¢|%u2216|%cB%5¢c|%c8%80%5¢) | (\/|%2f|
%252 |%25252F | %c0%af|%e0%80%af|%c0%2f|%u2215))([.]|%2e|%252e|%uB02e|%c0%2e|%e0%40%ae|%cOae)
([.11%2e|%252e|%uB02e|%cB%2e | %e0%40%ae|%cOae)|([.]|%2e|%252e|%uB082e|%c0%2e | %e0%40%ae|%cOae)
([.11%2e|%252e|%uB02e|%cB%2e | %e0%40%ae|%cBae) ((\\|%5¢c|%255¢|%u2216|%cO%5¢c|%c8%80%5¢) | (\/|%2f|%2
52f|%25252f | %c0%af|%e08%80%af|%c0%2f|%u2215)) ([a-zA-Z_\s]{4,})/i)

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, method, status_code, uri,
post_body, user_agent], limit=10), count(uri, distinct=true, as="#_uris"), count()])

21

THREAT HUNTING GUIDE (_ corelight

HTTP POST OR PUT URI NON ASCII CHARACTER

#path="http" or #path="http_red"

| (method="POST" or method="PUT") AND uri=/A.*[*\x08-\x7F].*$/

| format("%,.30s", field=post_body, as=post_body)

| groupby([host], function=[collect(id.orig_h, limit=18), collect(method, limit=10),
collect(uri, limit=10), collect(status_code, limit=18), collect(post_body, limit=10)])

POSSIBLE WEBSHELL PUT OR POST TO NON-ROOT URI WITHOUT REFERER

definetable({(#path=conn or #path=conn_red) local_orig=true}, name=internal_ips,
include=[id.orig_h])

| (#path=http or #path=http_red) status_code>=200 status_code<300 referrer!=* uri!="/"
response_body_len>0

| in(method, values=["PUSH", "POST", "GET"])

| 'match(file=internal_ips, field=id.orig_h)

| groupby([host, id.resp_h, id.resp_p], function=[collect(method, limit=5), collect(uri,
limit=15), collect(user_agent, limit=15), collect(id.orig_h, limit=15), collect(status_code,
limit=15), collect(referrer, limit=15)])

DEFENSE EVASION

Defense evasion consists of techniques that adversaries use to avoid detection throughout their compromise.

BITS Jobs
See Persistence: BITS Jobs

Port Knocking
See Persistence: Port Knocking

Subvert Trust Controls: Install root certificate (T1553.004)

Public certificates are used to establish secure TLS/SSL communications. Root certificates are used to identify the root
certificate authority (CA). Root certificates are self-signed and form an anchor of trust for public key cryptography. For
example, when a root certificate is installed, the system or application will trust certificates in the root's chain of trust.
While no network-level device (e.g., routers and switches) can show the certificate chain installed on a client system, the
point of installing a malicious root certificate is to bypass trust validation.

22

THREAT HUNTING GUIDE (_ corelight

Using Corelight data, you can observe all aspects of the TLS/SSL session using the ss1 and x509 logs. These two logs allow
analysts to identify certificates that seem suspicious by:

1. Searching the ssl log for any entries where the validation_status field doesn’t have a value of ok.

2. Reviewing records where the validation_status field is either self-signed certificate or self-signed
certificate in certificate chain.

3. Reviewing the subject and server_name fields to determine the likely organization or website that controls
the server.

4. Filtering results where there are legitimate self-signed certificates in use, such as in communications between IOT
devices and the supporting cloud infrastructure.

5. Investigating the id.resp_h IP address to see what Autonomous System the session belongs to and whether it's a
reasonable AS organization (such as the organization that matches the information on the server, or a commonly-
used cloud hosting provider)

6. Forremaining connections, use the values in the cert_chain_fuids to pivot to the certificates in the x509 log and
review the certificate details.

Focus your investigations by inspecting the local root certificate authority on the endpoint.

SELF SIGNED TLS SSL CERTIFICATE (OVERVIEW QUERY)

(#path="ssl" or #path=ssl_red) validation_status="self signed certificate"
| groupby([server_name], function=[collect(subject, limit=15), collect(issuer, limit=15)])

SSL CONNECTIONS WITH NON-OK CERTIFICATE VALIDITY (OVERVIEW QUERY)

(#path=ssl or #path=ssl_red) validation_status!="ok" validation_status=*

| groupby([id.resp_h, id.resp_p], function=[collect(server_name, limit=10), collect(subject,
limit=10), collect(issuer, 1limit=10), collect(ja3, 1limit=10), collect(ja3s, limit=10),
collect(validation_status, limit=18), collect(cipher, limit=10), collect(version, limit=10)])

CREDENTIAL ACCESS (TA0006)

Credential access is when the adversary tries to steal authentication materials, typically account names and passwords.

Brute Force (T1110)

An adversary attempts to gain unauthorized access by systematically guessing a user’'s password using a repetitive or
iterative mechanism. Sometimes a brute force attack originates from a list of known information, increasing the likelihood
of success.

For example, an attacker attempting to guess the password of an Active Directory account likely results in many
connections to a Domain Controller on the LDAP port (389 or 636). An attacker attempting to discover API URLs in an
e-commerce system generates many more connections to the web server than other clients in a similar time period and
creates more HTTP status codes in the 400 and 500 range (errors) compared to other clients.

23

THREAT HUNTING GUIDE (_ corelight

To look for a brute force attack:

In the conn log, aggregate by id.orig_h, id.resp_h, id.resp_p, proto, and (optionally) service.
Add a count for the number of operations and sort by the highest counts.

Choose a time period that makes sense, based on the size of the network/data set, starting small and
gradually increasing.

Filter records that are obviously permissible, such as repeated contacts from network or application performance
monitoring systems, vulnerability management systems, or business applications

For unknown or suspicious records, perform a deeper investigation on that behavior. For example, look for other
connections originating from the remote IP address.

For protocols that can maintain connections over multiple transactions or attempts, look for long-standing
connections. These long-standing connections can also indicate repetitive behavior.

Corelight Sensors include a script that logs connections that are maintained for longer than a set of thresholds, starting at
ten minutes and continuing up to three days. If you are not a Corelight customer, but use open source Zeek, this script is
available through the Corelight GitHub page.

To hunt for long connections with the Long Connections package installed:

1.
2.
3.

Examine the notice log.
Review the entries where the note is LongConnection::found,

Review each set of id.orig_h, id.resp_h, id.resp_p to understand whether these devices should have
long connections.

To hunt for long connections without the Long Connections package installed:

1.
2.

Examine the conn log.

Gather a list of all connections with the following fields for each: id.orig_h, id.resp_h, id.resp_p, proto, service,
and duration fields. This only includes connections that completed, either properly or via timeout. Currently-open
connections are not represented in the results.

Sort the results by duration, bringing the longest connections to the top.
Investigate each result to determine whether it is legitimate or expected behavior.

Filter out expected behaviors and thoroughly investigate anything that seems suspicious.

Corelight also gives you the Encrypted Traffic Collection (ETC), which automatically looks for brute force password
guessing attempts against SSH servers within a single connection.

POTENTIAL FORCED EXTERNAL OUTBOUND KERBEROS

(#path="conn" or #path="conn_red") history="Sh*" service="*krb*" local_orig="true"
local_resp="false"

| groupby([id.resp_h, id.resp_p, resp_cc], function=[collect(id.orig_h, limit=15),
collect(conn_state, limit=10), collect(service, 1limit=10), count(id.orig_h, distinct=true,
as="#_clients")])

24

https://github.com/corelight

THREAT HUNTING GUIDE (_ corelight

POSSIBLE KERBEROS BRUTE FORCE ATTEMPT

#path="kerberos" client="*" | groupby(field=id.resp_h, function=count(field=id.orig_h,
distinct=true, as=val)) | val > 100

MULTIPLE SSH BRUTE INFERENCES FROM SINGLE IP

#path="ssh" | split(inferences) | inferences="*BF*"
| groupby(field=id.orig_h, function=count(field=id.resp_h, distinct=true, as=val)) | val > 3

Forced Authentication (T1187)

Some protocols automatically authenticate when a user accesses a resource without first checking to see if the resource
being accessed is trusted. For example, an attacker can embed a reference in a Microsoft Office document to a file that's
hosted on an attacker-controlled UNC path (\\servername\sharename\path\to\file). When the user opens the file, the
machine attempts to access the resource. The attacker-controlled server then challenges the machine for authentication,
and under most circumstances, the victim machine automatically provides cached credentials, usually in the form of an
NTLM hash. The attacker can then attempt to use the credentials for unauthorized access, usually through reversing the
hash to get the password, or re-using the hash in a pass-the-hash attack.

This method requires the attacker to control server infrastructure. As a result, the most likely attack vector is
spearphishing. The attacker phishes a user on the network, and the victim machine then reaches out to the attacker-
controlled server across the internet. To hunt for this behavior, look for authentication across the internet:

1. Look in the ntlm log for any signs of NTLM authentication in which the destination IP is on the external network.

2. Look for entries in the conn log in which the service field contains smb (and/or ntlm), and local_resp is false.

In LLMNR or NBT-NS poisoning, an attacker listens to local LLMNR or NBT-NS broadcasts asking for a particular resource
by name. The attacker then responds to the querying client spoofing the actual resource. If the resource is one that
usually requires authentication, then the attacker can challenge the client for authentication. When the client authenticates,
usually with a password hash, the attacker uses the credentials to impersonate the client and access resources.

You can effectively hunt for these attacks with Corelight data, but the sensor needs to be inside of the broadcast domain
because broadcast traffic doesn't typically traverse routers. Typically you need to span or mirror entire VLANSs, or forward
LLMNR or NBT-NS traffic from client subnets and VLANSs, to places on the network that Corelight is monitoring.

Look for dns logs where id.resp_p=5355 (LLMNR) or id.resp_p=137 (NBT-NS), and filter for records where the answers

field is non-empty. Then count the number of distinct query fields per id.resp_h. This search yields IPs that respond to
more than one name.

25

THREAT HUNTING GUIDE (_ corelight

POTENTIAL WEBDAV FORCED AUTHENTICATION

definetable({(#path=conn or #path=conn_red) local_orig=true local_resp=false},
name=outbound_conns, include=[id.orig_h, id.resp_h])

| (#path="http" or #path="http_red") user_agent=/webdav/i

| match(file=outbound_conns, field=[id.orig_h, id.resp_h])

| groupby([id.orig_h, id.resp_h, id.resp_p], function=[collect(host, limit=10),
collect(method, 1limit=108), collect(status_code, 1limit=10), collect(user_agent, limit=10)])

POTENTIAL FORCED EXTERNAL OUTBOUND NTLM

(#path="conn" or #path="conn_red") history="Sh*" service="*ntlm*" local_orig="true"
local_resp="false"

| groupby([id.resp_h, id.resp_p], function=[collect(id.orig_h, limit=10), collect(conn_state,
limit=10), collect(service, limit=10)])

POTENTIAL FORCED EXTERNAL OUTBOUND SMB

(#path="conn" or #path="conn_red") history="Sh*" service="*smb*" local_orig="true"
local_resp="false"

| groupby([id.resp_h, id.resp_p], function=[collect(id.orig_h, limit=10), collect(conn_state,
limit=10), collect(service, limit=10)])

POTENTIAL FORCED EXTERNAL OUTBOUND DCE_RPC

(#path="conn" or #path="conn_red") history="Sh*" service="*dce*" local_orig="true"
local_resp="false"

| groupby([id.resp_h, id.resp_p], function=[collect(id.orig_h, limit=10), collect(conn_state,
limit=10), collect(service, limit=10)])

26

THREAT HUNTING GUIDE (_ corelight

POTENTIAL FORCED EXTERNAL OUTBOUND GSSAPI

(#path="conn" or #path="conn_red") history="Sh*" service="*gssapi*" local_orig="true"
local_resp="false"

| groupby([id.resp_h, id.resp_p], function=[collect(id.orig_h, limit=10), collect(conn_state,
limit=10), collect(service, limit=10)])

POTENTIAL FORCED LLMNR LOOKUP

definetable({(#path=conn or #path=conn_red) local_orig=true local_resp=false},
name=outbound_conns, include=[id.orig_h, id.resp_h])

| (#path="dns" or #path="dns_red") id.resp_p="5355" answers[@8]="*" query="+*"

| match(file=outbound_conns, field=[id.orig_h, id.resp_h])

| groupby(field=[id.orig_h], function=[collect(id.resp_h, limit=15), collect(id.resp_p,
limit=15), collect(query, limit=15), collect(service, limit=15), count(field=query,
distinct=true, as=val)])

| val > 2

POTENTIAL FORCED NETBIOS DNS LOOKUP

definetable({(#path=conn or #path=conn_red) local_orig=true local_resp=false},
name=outbound_conns, include=[id.orig_h, id.resp_h])

| (#path="dns" or #path="dns_red")

| split(answers)

| (id.resp_p="137" or id.resp_p="138") answers="*"

| match(file=outbound_conns, field=[id.orig_h, id.resp_h])

| groupby(field=[id.resp_h, id.resp_p], function=[collect(id.orig_h, limit=10), collect(query,
limit=10), count(field=query, distinct=true, as="#_query")])

| "#_query" > 2

27

THREAT HUNTING GUIDE (_ corelight

Network Sniffing (T1040)
You can't detect an intruder who is sniffing traffic on your network using network logs because the action is invisible;
however, you can detect an intruder by sniffing on your own network because your adversary can't see it.

Corelight Sensors enable you to deploy an out-of-band sensor grid that generates linked logs. These logs speed reliable
observation and detection, and assist in avoiding the pitfall of prevention dependence, while providing context for a
deeper and more accurate historical analysis. As Rob Joyce, Chief of the NSA Tailored Access Operations division, putitin
his 2016 USENIX talk, "We are doing nation-state exploitation...what can you do to defend yourself to make my life hard?"

DISCOVERY (TA0007)

The adversary is trying to learn about your environment.

Network Service Discovery (T1046)
To determine which devices on a network are exploitable, and the services available on those devices, an intruder can
employ active scanning. Active scanning methods include:

+ Horizontal scanning: Sending connection requests to a specific port across many IPs to see which IPs respond. For
example, scanning across many devices on port TCP/22 typically reveals devices running an SSH server. Scanning
across many devices on port TCP/445 can effectively enumerate Windows infrastructure.

+ Vertical scanning: Sending connection requests to a single IP address across many ports to see which ports respond.
This method lets attackers infer services available from that IP address.

Each of these methods can be performed using a free or commercially-available vulnerability scanner. These
products often add other logic to check service availability, version information, and if services are vulnerable to
known exploitation techniques.

If an intruder uses one or more of the above methods to attempt service discovery, the byproduct is a failed or rejected
connection. In Corelight data, these are recorded in the conn log as connections with a conn_state of S8 or REJ
(initiated, and rejected), and typically have a history field where there is no D (post-syn data from the initiator). To look
for network service scanning internal to the network:

1. Search for entries in the conn log where conn_state is S0 or REJ.
2. Filter for records where local_orig=true and local_resp=true.

3. Group and count the results by the id.orig_h, and the number of unique id.resp_p, to assess the horizontal/
verticalness of the scan.

4. Inspectthe list, starting with the records that have the highest count of id.resp_h or id.resp_p.
5. Identify the originator (id.orig_h) and review the list of responders (id.resp_h) and ports (id.resp_p).

6. Determine whether the behavior is acceptable based on the identity of the source, the ports involved, and the
destinations.

Not all items on the list are malicious. DHCP servers, for example, are commonly configured to ping an IP address to
confirm if the address is in use before assigning it from the pool. Print servers with a large number of print queues
attempt SNMP and/or network printing services to printers, even if those printers are offline. For this reason, print servers
can cause large numbers of S8 connections. Of course, software that scans legitimately, such as a corporate-sanctioned
vulnerability scanner or an inventory management system, might appear in the list. Finally, network engineers conduct
ad-hoc network scanning for troubleshooting purposes. If you run across network scanning, modify the original query to
omit the records that are known to be benign, then resume hunting.

28

THREAT HUNTING GUIDE (_ corelight

NETWORK SERVICE SCANNING MULTIPLE IPS FOR OPEN PORT

(#path="conn" or #path="conn_red") (conn_state="S@" or conn_state="REJ") local_orig="true"
local_resp="true" !(history="*d*")

| groupby(field=id.orig_h, function=[count(field=id.resp_p, distinct=true, as="#_ports"),
count(id.resp_h, distinct=true, as="#_dest")])

| "#_ports" > 10

NETWORK SERVICE SCANNING MULTIPLE IPS

(#path="conn" or #path="conn_red") conn_state="S8" or conn_state="REJ"

| local_orig="true" local_resp="true" !(history="*d*")

| groupby(field=id.orig_h, function=[count(field=id.resp_h, distinct=true, as="#_dest"),
count(field=id.resp_p, distinct=true, as="#_port")])

| "#_dest" > 25

DOMAIN USER ENUMERATION NETWORK RECON 01

#path="dce_rpc"

| in(operation, values=["LsarLookupNames3", "LsarLookupSids3", "SamrGetGroupsForUser",
"SamrLookupIdsInDomain", "SamrLookupNamesInDomain", "SamrQuerySecurityObject",
"SamrQueryInformationGroup"])

| groupby(field=id.orig_h, function=[count(field=operation, distinct=true, as="#_ops"),

count(id.resp_h, distinct=true, as="#_dest"), collect(endpoint, limit=10), collect(operation,

limit=10), collect(named_pipe, limit=10)])

| "#_ops" > 6

MULTIPLE REMOTE SMB CONNECTIONS FROM SINGLE CLIENT

#path="smb_mapping" path="*"

| groupby(field=id.orig_h, function=[count(field=path, distinct=true, as="#_shares"),
collect(id.resp_h, limit=20), collect(path, limit=20)])

| "#_shares" > 20

29

THREAT HUNTING GUIDE (_ corelight

Network Share Discovery (T1135)

The most common network sharing protocol abused by attackers is SMB, the standard for Windows file sharing. SMB is
supported by every modern operating system. High-value documents that store PIl, trade secrets, network diagrams, and
other sensitive data, typically live on SMB shares in enterprises of all sizes.

Scanning for and discovering shares on an SMB server is typically done using a DCE/RPC command on TCP port 445.
Specifically, a connection to the "srvsvc" pipe—which shows up in the dce_rpc logs as an endpoint by the same name—is
followed by a call to the NetShareEnumAll or NetShareEnum functions (called an operation in the log). These function
calls are used for legitimate file-sharing purposes, and taken alone they are insufficient indicators of malicious intent.
However, in combination with other indicators of lateral movement, they illustrate how an attacker moved laterally within
a network. Prime targets for further investigation are ones that generate a large number of DCE_RPC function calls across
a large number of hosts in a short period.

NETWORK SHARE DISCOVERY

#path="dce_rpc" (endpoint="srvsvc" or operation="NetshareEnumAll" or
operation="NetShareEnum")

| groupby(field=id.orig_h, function=[count(field=id.resp_h, distinct=true, as="#_dest"),
collect(id.resp_h, 1limit=10), collect(operation, 1limit=10), collect(endpoint, limit=10),
collect(named_pipe, limit=10)])

| "#_dest" > 3

Network Sniffing (T1040)
See Credential Access: Network Sniffing

Remote System Discovery (T1018)
The same principles for detecting Network Service Scanning apply to detecting Remote System Discovery. See this section
for more information.

LATERAL MOVEMENT (TA0008)

Lateral movement is what adversaries use to enter and control remote systems on a network.

Remote Services: Remote Desktop Protocol (T1021.001)

The Microsoft Remote Desktop Protocol (RDP) is used to remotely control a Windows endpoint. This protocol can be
abused by an attacker to gain unauthorized access to your network (see Initial Access: External Remote Services). Once an
intruder is inside, they can use RDP to move laterally among devices.

RDP is one of the many protocols parsed by Corelight. For some environments, the presence of RDP, or its presence on
specific systems, is sufficient to trigger an investigation. For networks where RDP is permitted, the Corelight rdp log is rich
in information that helps establish whether a connection is legitimate, for example, recording data like keyboard layout,
encryption levels, or client name for a connection.

30

THREAT HUNTING GUIDE (_ corelight

When hunting with the rdp log:
1. Focusontheid.orig_h, id.resp_h, id.resp_p, and cookie fields. The cookie field can contain any arbitrary value
sent by the RDP client to the server, but it often contains the username sent by the RDP client.

2. Aggregate the records based on these four fields and show a count for each unique set.

3. Iterate through the set and identify the origin and destination of each connection (e.g., you can use the records from
the dns and dhcp logs).

4. Some RDP connections will use a non-standard keyboard layout. To look for this, examine the keyboard_layout field.
Count the number of instances of each value and apply data stacking to look for outlying or rarely occurring values.

5. Identify the origin and destination and determine whether the non-standard keyboard layout is expected, for
instance, if the origin user is known to have a non-English language as their primary language, and that language is
the requested language in the RDP connection.

After you have this information ask several questions:
+ Does the cookie value match the expected user at the source or destination machine?
+ Isthere alegitimate reason for the originator to be using RDP?

+ Arethere any users using RDP where you wouldn't expect that for their job function?

RDP DASHBOARD (OVERVIEW QUERY)

#path=rdp id.orig_h=*
| groupby([id.orig_h, id.resp_h, id.resp_p], function=[collect(cookie, limit=10),
collect(keyboard_layout, limit=10)])

RDP SUSPICIOUS KEYBOARD LAYOUT

#path="rdp"

| in(keyboard_layout, values=["*Arabic*", "Armenian - Armenia", "Farsi", "Pashto", "Swahili",
"Syriac", "Chinese *", "Mongolian (Mongolian)", "Mongolian *", "Tibetan *", "Uighur - China",
"Assamese"”, "Kannada", "* India", "Sanskrit", "Telugu"”, "Korean", "* Nigeria", "Wolof",

"Yoruba", "Catalan", "Rhaeto-Romanic", "Albanian - Albania", "*Cyrillic*", "FYRO Macedonian",
"Russian *", "Sorbian", "Uzbek (Cyrillic)", "Uzbek (Latin)", "Yakut", "Serbian", "Slovak",
"Slovenian", "Vietnamese"])

| groupby([id.orig_h], function=[collect(id.resp_h, limit=10), collect(id.resp_p, limit=10),
collect(cookie, 1limit=10), collect(keyboard_layout, limit=10)])

31

THREAT HUNTING GUIDE (_ corelight

RDP POSSIBLE NON USER LOGIN, ABNORMAL SCREEN RESOLUTION

#path="rdp" destop_height<600 desktop_width<600

| groupby([id.orig_h], function=[collect(id.resp_h, limit=10), collect(id.resp_p,
limit=10), collect([desktop_width, desktop_height], 1limit=10), collect(cookie, limit=10),
collect(keyboard_layout, limit=10)])

Exploitation of Remote Services (T1210)

Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error to execute
adversary-controlled code. This exploitation can happen in a program, service, or within the operating system software or
kernel itself. A common goal for post-compromise exploitation of remote services is for lateral movement.

Given the complexity of today's enterprise networks, a variety of third-party and external services are often in use. These
services allow attackers to gain initial access or to move laterally. All connections are logged within the conn log, however,
more details may be available within protocol-specific logs depending on the nature of the remote service under attack. For
example, you can monitor the http log file for suspicious and unexpected HTTP requests (such as OPTIONS requests).

_path: http

uid: CEeVS92Ljnr9jbw2J5
id.orig_h: 54.235.163.229
id.orig_p: 41855
id.resp_h: 192.168.0.2
id.resp_p: 80
trans_depth: 1

method: OPTIONS

host: host-90-236-3-35.mobileonline.telia.com
uri: *

version:1.1

Additionally, Corelight extracts information about software observed on the network into the software log. This file
provides defenders valuable data to monitor for unexpected or unauthorized servers, vulnerable or out-of-date services,
and unpatched client software.

32

THREAT HUNTING GUIDE (_ corelight

path: software

host: 192.168.0.53

software_type: SMTP::MAIL_CLIENT

name: Microsoft Outlook Express

version.major: 6

version.minor: 0

version.minor2: 2900

version.minor3: 5512

unparsed_version: Microsoft Outlook Express 6.00.2900.5512

MULTIPLE WINDOWS ADMIN SHARE CONNECTIONS

#path="smb_mapping" path="*ADMINS*"

| groupby(field=id.orig_h, function=[collect([id.resp_h, path], limit=10),
count(field=id.resp_h, distinct=true, as="#_shares")])

| "#_shares" > 3

WINDOWS SYSVOL FILE MODIFICATION

#path="smb_files" !(action="SMB::FILE_OPEN") path=/sysvol/i
| groupby([id.orig_h], function=[collect([id.resp_h, id.resp_p, action, path], limit=10)])

MULTIPLE KERBEROS TICKETS USED FROM SINGLE CLIENT

#path="kerberos" success="true" request_type="TGS" client="*" till="*"

| groupby(field=id.orig_h, function=[collect([client, service, till], limit=20),
count(field=client, distinct=true, as="#_clients")])

| "#_clients" > 5

MULTIPLE WINDOWS REMOTE REGISTRY SERVICE CONNECTIONS

#path="dce_rpc" endpoint="winreg"

| groupby(field=id.orig_h, function=[collect([id.resp_h, endpoint], limit=20),
count(field=id.resp_h, distinct=true, as="#_dest")])

| "#_dest" > 10

33

THREAT HUNTING GUIDE (_ corelight

Remote Services: SMB/Windows Admin Shares (T1021.002)
Windows systems have hidden network shares that are accessible only to administrators and provide the ability for remote
file copy and other administrative functions. Example network shares include C$, ADMIN$, and IPC$.

Attackers often use SMB to connect to administrative shares on Microsoft Windows workstations and servers. They may
want to learn more about the target, extract sensitive files, upload malicious payloads, or authenticate so that further tools
and attacks can proceed.

Corelight monitors SMB traffic, including authentication attempts, allowing defenders to log and notice patterns of administrative
authentication attempts as well as monitor SMB traffic to extract transferred files. The example demonstrates the action FILE_
OPEN being performed using the hidden admin share. Corelight logs the action performed including Open/Rename/Delete/Write.

path: smb_files

uid: CB3Ezw2X3tYKtxunq

id.orig_h: 10.10.199.101

id.orig_p: 49710

id.resp_h: 10.10.199.31

id.resp_p: 445

action: SMB::FILE_OPEN

path: \\\\10.10.199.31\\admin$

name: <share_root>

size: 24576

times.modified: 2020-04-07T21:17:30.244159Z
times.accessed: 2020-04-07T21:17:30.244159Z
times.created: 2016-07-16T06:04:24.770745Z
times.changed: 2020-04-07T21:17:30.244159Z

ADMINISTRATIVE SHARE FILE CREATION

#path="smb_files" action="SMB::FILE_WRITE"

| lower(path, as=share)

| (share="*admin$" or share="*print$" or share="*fax$*" or share=/.*\\[a-z]\$$/)

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, action, share, name], limit=15),
count()])

PSEXEC OVER SMB DETECTED

#path="smb_files"

| lower(field="name", as="name"

| name="*psexesvc*"

| groupby([id.orig_h], function=[collect([id.resp_h, id.resp_p, action, path, name],
1limit=15)])

34

THREAT HUNTING GUIDE (_ corelight

SCHEDULE TASK ACCESS OR MANIPULATION OVER SMB

#path="smb_files" name="*ScheduledTasks.xml" path="**\\SYSVOL*" !(action="SMB::FILE_OPEN")
| groupby([id.orig_h], function=collect([id.resp_h, id.resp_p, action, path, name], limit=15))

SMB SINGLE FILE CREATED THEN DELETED SUCCESSIVELY

#path="smb_files" name="*" !(name="<share_root>")

| groupby(field=name, function=[collect([id.orig_h, id.resp_h, id.resp_p, path, action]),
count(field=times.modified, distinct=true, as="#_times_modified")])

| "#_times_modified" > 5

REMOTE CREATION OF TEMP FILE IN SYSTEM32 FOLDER

#path="smb_files" name="*SYSTEM32*.tmp*" !(action="SMB::FILE_OPEN")
|groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, action, path, name], limit=15)])

COLLECTION (TA0009)

The adversary is trying to gather data to achieve their goal.

Archive Collected Data (T1560)

To conceal data, attackers may consolidate data into compressed archive files, such as Zip, RAR, TAR, or CAB files. To hunt
for this obfuscation technique, use the files log.

To search for compressed files:

1. Search the files log, retrieving the id.orig_h, id.resp_h, mime_type, total_bytes, and source fields.
2. Remove records with uninteresting mime_types from the results, for example:

a. application/x-x509-*
b. application/ocsp*
c. image/*
d. audio/*
e.video/*
f. text/*
g. application/xml
h. application/chrome-ext
3. Continue until only compressed files remain

35

THREAT HUNTING GUIDE (_ corelight

MULTIPLE COMPRESSED FILES TRANSFERRED OUTBOUND

(#path="files" or #path="files_red") !(total_bytes="0") local_orig=true

| in(mime_type, values=["application/vnd.ms-cab-compressed", "application/warc",
"application/x-7z-compressed"”, "application/x-ace", "application/x-arc",
"application/x-archive"”, "application/x-arj", "application/x-compress",
"application/x-cpio"”, "application/x-dmg", "application/x-gzip", "application/x-lha",
"application/x-eet", "application/x-lrzip", "application/x-1z4", "application/x-1zh",
"application/x-1zma", "application/x-1lzip", "application/x-rar", "application/x-rpm",
"application/x-rpm", "application/x-stuffit", "application/x-tar", "application/x-xz",
"application/x-zoo", "application/zip"

1)

| groupby(field=id.orig_h, function=[collect([id.resp_h, id.resp_p, mime_type, shal],
limit=15), sum(total_bytes, as="sum_bytes"), count(field=shal, distinct=true, as="#_files")])
| "#_files" > 25

MULTIPLE COMPRESSED FILES TRANSFERRED OVER HTTP

defineTable(query={(#path=conn or #path=conn_red local_orig=true local_resp=false)},
include=[id.orig_h, id.resp_h], name="outbound_conns")

| (#path="http" or #path="http_red") (method="POST" or method="PUT") !(referrer="*")
request_body_len>0

| split(orig_mime_types)

| in(orig_mime_types, values=["application/vnd.ms-cab-compressed", "application/warc",
"application/x-7z-compressed"”, "application/x-ace", "application/x-arc",
"application/x-archive"”, "application/x-arj", "application/x-compress",
"application/x-cpio"”, "application/x-dmg", "application/x-eet",

"application/x-gzip", "application/x-lha", "application/x-lrzip", "application/x-1z4",
"application/x-1zma", "application/x-1zh", "application/x-1lzip", "application/x-rar",
"application/x-rpm","application/x-stuffit", "application/x-tar", "application/x-xz",
"application/x-zoo", "application/zip"])

| match(file=outbound_conns, field=[id.orig_h, id.resp_h])

| groupby(field=id.orig_h, function=[collect([id.resp_h, id.resp_p, host, method, uri,
status_code, referrer, orig_mime_types], limit=15), count(field=uid, distinct=true,
as="#_conns")])

| "#_conns" > 25

36

THREAT HUNTING GUIDE (_ corelight

POSSIBLE DATA COLLECTION OVER SMB

#path="smb_files" name="*" !(name="<share_root>")

| groupby(field=id.orig_h, function=[collect([id.resp_h, id.resp_p, action, path, name],
1limit=20),count(field=name, distinct=true, as="#_files")])

| #_files > 50

POSSIBLE DATA COLLECTION RELATED TO OFFICE DOCS AND EMAIL ARCHIVES AND PDFS

#path="smb_files" name="*" !(name="<share_root>")

| in(name, values=["*.doc", "*.x1s", "*.ost", "*.pst", "*.pst1", "*.pdf", "*.vss", "*.viz"])
| groupby(field=id.orig_h, function=[collect([id.resp_h, id.resp_p, action, path, name],
1limit=20) ,count(field=name, distinct=true, as="#_files")])

| "#_files" > 30

Automated Collection (T1119)

Attackers can deploy automated tools on a compromised host to monitor intranet services for sensitive data and corporate
secrets. These tools can include scripts to search for (and copy) information such as file type, location, or name at specific
time intervals. Intruders may use remote access tools to conduct automated collection.

For example, a custom tool may query an intranet web server or an internal email server, polling regularly for new content.
Corelight monitors multiple protocols including HTTP, email, MySQL, FTP, and SMB traffic to provide insight into these queries.

When hunting for automated collection use, defenders can identify automated tools by watching for repetitive queries or
regularly scheduled connections. For example, if an intruder is web scraping, there will be a large number of connections
from a finite number of IP addresses. Additionally, you can use the SMB logs (smb_files or smb_mapping) to identify
anomalous traffic patterns of devices accessing internal Windows file shares.

Data From Network Shared Drive (T1039)

Network shared drives are a treasure trove of sensitive corporate documents. Most enterprise networks host shared
network drives using SMB, but some may rely on FTP, HTTP, or even RDP. Corelight can monitor access to shared network
drives when protocols like SMB, FTP, or HTTP are used. Remote control protocols, like RDP, are also parsed in protocol-
specific logs. Anywhere Corelight sees this traffic, it is monitored and logged in the protocol-specific log.

37

THREAT HUNTING GUIDE (_ corelight

The following example demonstrates the ftp log. Corelight logs the command and arguments.

path: ftp

uid: COEeI73um1Aw3rrOib
id.orig_h: 10.0.0.11
id.orig_p: 45831,
id.resp_h: 119.74.138.214
id.resp_p: 21,

user: 1

password: <hidden>
command: RETR

arg: ftp://119.74.138.214/doc.exe
reply_msg: Transfer OK

SENSITIVE FILE ACCESS OVER SMB SHARE

#path="smb_files"

| in(name, values=["*.rsa", "*.pem", "*.dsa", "*.dit", "*.ecdsa", "*.ocsp", "*.ed25519",
"*.p12", "*.pfx", "*.kdbx", "*keychain", "*keystore", "*keyring", "*pass.txt", "*password.txt",
"*passwords.txt", "*.bek", "*passwd"”, "*shadow", "*salesforce.js", "*.psafe3",
"*credentials.xml", "*localsettings.php”, "*.mimi", "*.dmp", "*.dump"”, "*hiberfil.sys",
"#1.txt", "*.kirbi", "*.ost", "*.pst", "*groups.xml", "*.bak", "*.ovpn", "*.sqlite", "*.sqlite3",
"*.sqldump"])

| groupby([id.orig_h], function=[collect([id.resp_h, id.resp_p, action, path, name],
1limit=20), count(name, distinct=true, as="#_files")])

SENSITIVE FILE ACCESS ON ADMIN NETWORK SHARE

#path="smb_files" path="*ADMINS*"

| lowercase(name)

| in(name, values=["*\\\\mimidrv*", "*\\\\lsass*", "*\\\\windows\\\\minidump*",
"*\\\\hiberfil*", "#*\\\\sqldmpr*", "*\\\\sam*", "*\\\\ntds.dit*", "*\\\\security*"])

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, action, path, name], limit=20),
count(name, distinct=true, as="#_files")])

38

THREAT HUNTING GUIDE (_ corelight

COMMAND AND CONTROL (TA0011)

The adversary is trying to communicate with compromised systems to control them.

Data Obfuscation: Protocol or Service Impersonation (T1001.003), Non-Standard Port (T1571)
Adversaries may use a well known or alternative port associated with an existing protocol to avoid more detailed inspection.

Hunting for C2 channels over commonly used ports is difficult, but not impossible. To look for C2 channels, search for well-
known ports that are being used with an uncommon service.

When hunting for C2 using commonly used ports:

1. Initially focus on the service field, and search the conn log for entries where the service field isn't what you would
expect for the standard port (the service field could be null or an unexpected service).

a. Startwith the most common protocols:
+ TCP:80 (HTTP) TCP:443 (HTTPS)

+ TCP:25(SMTP)

+ TCP/UDP:53 (DNS)

2. Corelight's Encrypted Traffic Collection contains a package titled Encryption Detection. Encryption
Detection generates a notice when cleartext traffic is observed on usually encrypted ports. Observing notices
for Viz::UnencryptedService highlights this behavior and helps you identify potentially malicious connections
using common ports.

The Corelight Encrypted Traffic Collection package also has a feature that notifies you when a session uses instant
encryption. The package looks for pre-shared keys or encrypted connections that begin without a traditional key negotiation.
Observing notices for Viz::CustomCrypto highlights this behavior and helps you identify potentially malicious connections
using common ports.

Additionally, you can use the Corelight dpd and weird logs to identify unexpected protocol behavior. These logs show
debugging and parsing errors and identify out-of-specification usage of common ports and protocols—which might indicate
malicious activity or covert use of known ports and protocols.

_path: dpd

uid: C5LNtk1n9NkT8m300j

id.orig_h: 192.168.0.54

id.orig_p: 52841

id.resp_h: 54.89.42.30

id.resp_p: 80

proto: tcp

analyzer: HTTP

failure_reason: not a http request line

39

THREAT HUNTING GUIDE (_ corelight

COMMON PORT WITH UNUSUAL SERVICE

(#path=conn or #path=conn_red) id.orig_p<1024 local_orig=true local_resp=false

| in(service, values=["*http*", "#*ssl*", "*rdp*", "*ssh*"])

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, conn_state, service], limit=15),
sum(orig_bytes, as="sum_orig_bytes")])

Encrypted Channel (T1573)
See the Data Obfuscation: Protocol or Service Impersonation/Non-Standard Port section for a description of Corelight's

Encryption Detection package, the dpd log, and the weird log. These help you identify potential custom cryptographic
protocols.

SSH INFERENCE ABNORMAL CLIENT ACTIVITY

#path="ssh"

| split(inferences)

| in(inferences, values=["ABP", "BF", "BFS", "RSI", "RSL", "RSP"])

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, inferences, client]), count()])

CUSTOM CRYPTOGRAPHIC INFERENCE DETERMINED BY CORELIGHT

#path="notice" note="Viz::CustomCrypto"
| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, note, msg, sub], limit=10),
count()])

Fallback Channels (T1008), Multi-Stage Channels (T1104)
Adversaries have been known to split communications between different protocols, using one for inbound C2 and another
for outbound data. This allows for the communication to bypass firewall restrictions.

Malware that splits communication between two hosts for instructions and for exfiltration introduces a new challenge for
defenders. Recognizing the linkage between suspicious control traffic and large data transfers is challenging, but Corelight
provides packages and frameworks that synthesize data. For example, there is a package for determining the producer-
consumer ratio for connections that identifies imbalanced, and possibly suspicious, data transfers. Additionally, the
Intelligence Framework enables coordination with other defenders by identifying possible indicators of compromise (IP
addresses, email addresses, and domain names) in Corelight data.

40

THREAT HUNTING GUIDE (_ corelight

It's difficult to correlate attackers using different communication methods and channels but Corelight content, along with
Zeek frameworks and packages can help. They allow defenders to identify the hidden channels discreetly, providing multiple
opportunities for detection.

Beyond watching for the previously mentioned C2 communication mechanisms, here are some other signs available in
Corelight data:

+ Use the conn log to identify communication patterns that indicate additional channels (e.g., using id.orig_h and
id.resp_h to narrow connections to a time window and observe connections between the hosts that include odd ports,
failed or refused connections, or interesting/suspicious elements).

+ Use Corelight (ETC), or self-developed content, in conjunction with connection log discovery to find potential relationships
between overlapping, adjacent, or interesting connections.

+ Search for sequences of connections to unrelated hosts using different protocols or events in the dpd and weird logs as
described in Data Obfuscation: Protocol or Service Impersonation/Non-Standard Port.

Ingress Tool Transfer (T1105)
Intruders typically move files onto compromised systems—both tools that can assist with further lateral movement, and/or
sensitive files designed for exfiltration. Those files will typically move over an HTTP(S), SSH, or SMB connection.

For files moving over plaintext HTTP, details like the remote host name and the name and MIME type of the file being
transferred can be useful indicators; users should also consult the files log for the hashes of files being moved, as many
popular attacker tools have known cryptographic hashes that make identifying them easy. In the case of HTTPS, defenders
can use the IP address of the remote system, as well as the certificate details noted in the ss1 log (i.e., organization name,
FQDN of the remote host from the CN, etc.) to look for anomalous connections.

Intruders copy files from one endpoint to another as they move laterally among compromised assets. Traditionally, file
copies to or from Unix/Linux systems occur over the SSH protocol using the scp command. For Windows systems, remote
file uploads or downloads typically happen over SMB, but also may use SSH via PUTTY.

Corelight Sensors with the ETC SSH inferences package enabled extend the ssh log. The extension includes an inferences field
that adds inferred characteristics about the SSH traffic. For example, if the session is being used to move files, or if it is interactive:

+ LFU: Large File Upload
+ LFD: Large File Download

* KS: Keystrokes

To begin hunting for interesting SSH sessions use the inferences field in the ETC SSH package:
1. ldentify sessions where the inferences field contains LFU, SFU, LFD, or SFD

2. Determine whether file activity via SSH is legitimate and expected

41

THREAT HUNTING GUIDE (_ corelight

Corelight Sensors are preloaded with the MITRE BZAR (Bro/Zeek ATT&CK-Based Analytics and Reporting) package. MITRE
BZAR identifies MITRE ATT&CK techniques for remote file copy, namely files being copied to C$ or ADMIN$ Windows file
shares. This package generates entries in the notice log, as depicted here.

path: notice

uid: CiAtaM363GcEbU63zk

id.orig_h: 192.168.38.104

id.orig_p: 65431

id.resp_h: 192.168.38.102

id.resp_p: 445

fuid: FSeaVF4qnjl8cT3HF8

file_mime_type: text/plain

file_desc: Windows\\Temp\\hbaVJpzdnG

proto: tcp

note: ATTACK::Lateral_Movement_Extracted_File

msg: Saved a copy of the file written to SMB admin file share
sub: 2020-10-23/6f24ac6ce591baf02acd64684f596d2db0ec97cO
src: 192.168.38.104

dst: 192.168.38.102

p: 445

Even if you do not enable the MITRE BZAR package on your Corelight Sensor, Corelight still logs SMB share access in the
smb_mapping log and file access and modification in the smb_files log

The logs below illustrate the data contained in the Corelight family of SMB logs:

_path: smb_mapping

uid: CiAtaM363GcEbU63zk
id.orig_h: 192.168.38.104
id.orig_p: 65431
id.resp_h: 192.168.38.102
id.resp_p":445

path: \\\\192.168.38.162\\C$
share_type: DISK

42

THREAT HUNTING GUIDE (_ corelight

_path: smb_files

uid: CiAtaM363GcEbU63zk

id.orig_h: 192.168.38.104

id.orig_p: 65431,

id.resp_h: 192.168.38.102

id.resp_p: 445,

action: SMB::FILE_OPEN

path: \\\\192.168.38.162\\C$

name: Windows\\Temp\\hbaVJpzdnG

size: 1894,

times.modified: 2019-12-31T10:28:02.800834Z
times.accessed: 2019-12-31710:28:02.753959Z
times.created: 2019-12-31T10:28:02.566496Z
times.changed: 2019-12-31T10:28:02.800834Z"

To hunt for lateral movement:

1.

2.

Start by searching the smb_files logs, and focus on the id.orig_h, id.resp_h, path, and name fields

Filter out records where id.resp_h is a known file server, which reduces the results to potentially
interesting connections

Review the path and name fields to identify which share the file was accessed from or written to, and determine if the
behavior is suspicious.

For additional context about the remaining interesting records, you can pivot to the files log, using the UID to collect
specific information about the file(s). For example, the MD5/SHA1/SHA256 hash(es) are automatically calculated and
can be used to identify known malware in external systems, such as VirusTotal.

a. There are also other fields and possibly logs available (e.g., pe log) that can be used to rule out uninteresting records.

43

THREAT HUNTING GUIDE (_ corelight

POTENTIALLY INTERESTING USER AGENT AND MIME TYPE COMBINATION

defineTable(query={(#path=conn or #path=conn_red) local_orig=true local_resp=false},
include=[id.orig_h, id.resp_h], name="outbound_conns")

| #path="http" or #path="http_red"” | split(resp_mime_types)

| in(resp_mime_types, values=["application/java-archive", "application/mshelp",
"application/chrome-ext", "application/x-object", "application/x-executable",
"application/x-sharedlib”, "application/x-mach-o-executable", "application/x-dosexec",
"application/x-java-applet”, "application/x-java-jnlp-file", "text/x-php", "text/x-perl",
"text/x-ruby"”, "text/x-python", "text/x-awk", "text/x-tcl", "text/x-lua“,
"text/x-msdos-batch"])

| lowercase(user_agent)

| in(user_agent, values=["*certutil*", "*powershell*", "*microsoft*", "*python*",
"*libwww-perl*", "*go-http*", "*java/*", "*lua-resty-http*", "*winhttp*", "*vb project*",
"*ruby*"])

| match(file=outbound_conns, field=[id.orig_h, id.resp_h])

| groupby([id.orig_h], function=[collect([id.resp_h, id.resp_p, user_agent, method, host,
resp_mime_types, uri], limit=15)])

EXECUTABLE FROM WEBDAV

(#path="http" or #path="http_red") (user_agent="*WebDAV*" or uri="*webdav*")

| split(resp_mime_types)

| resp_mime_types="*dosexec*" or uri="*exe"

| groupby(id.orig_h, function=collect([id.resp_h, id.resp_p, user_agent, method, host,
resp_mime_types, uri]))

Non-Application Layer Protocol (T1095)

Attackers often make use of a pair of techniques for hiding inside of legitimate traffic: sending their communications over a
custom protocol on a commonly allowed port like 80, 443, or 53, and embedding their messaging inside of the structure of
legitimate but typically less-monitored protocols like ICMP.

For the use of custom protocols on standard ports, see the Data Obfuscation: Protocol or Service Impersonation section for
a description of Corelight's Encryption Detection package, the dpd log, and the weird log. These help you identify custom C2
communications that use non-standard encryption or violate traditional protocol specifications.

Malware sometimes employs standardized lower-level protocols like ICMP, UDP, and SOCKS to avoid detection as these
protocols are rarely monitored. For example, malware authors might embed C2 instructions in an ICMP Echo Request

("ping") packet.

44

THREAT HUNTING GUIDE (_ corelight

Corelight monitors all connections regardless of protocol, and stores connection data within the conn log. C2 channels that
employ custom UDP protocols or TCP-based SOCKS protocols (but no standard application layer protocols) have conn log
entries with no identifiable service field. These fields and logs provide visibility into traffic flows across the network—even
ICMP, UDP, and SOCKS. For ICMP sessions, Corelight data contains more than just the source and destination, for example;
packet counts, bytes transferred, and size of ICMP data for both the sender and recipient.

With this data, you have the information needed to discover abnormally large or frequent ICMP communications that can be
indicative of C2. The log shown is a sample of the socks log.

_path: socks

uid: C5u9ig4ACZvweN5my6
id.orig_h: 192.168.0.2
id.orig_p: 55951
id.resp_h: 192.168.0.1
id.resp_p: 1080

version: 5

user: bob

status: succeeded
request.host: 192.168.0.2
request_p: 22
bound.host: 192.168.0.1
bound_p: 55951

To hunt for an intruder using a standard non-application layer protocol to tunnel information:
1. Search the conn log for entries where the service field is blank, local_origis true, and local_resp is false
2. Aggregate those results by id.orig_h, id.resp_h, id.resp_p and summarize by count
3. Filter out‘normal’ entries
4

Investigate any remaining items, focusing on the line items with the greatest count first

Proxy (T1090)

While the use of proxies doesn't itself prove the presence of an intruder, intruders can use proxies to "launder" connections
to obscure the communication from defenders. There are many methods to observe this, including traditional analysis of
the underlying connection (signature, anomaly, behavioral) and statistical analysis of connection properties. Specifically
identifying proxied connections is critical for beginning hunting or investigation.

If you see a value in the proxied field of Corelight's http log, that means an HTTP connection was proxied. The http log
captures proxy details from the HTTP headers. Search for any records in the http log that have a non-empty proxied field.

* host: the domain name of the website
« id.orig_h: the IP address of the proxy or reverse proxy
+ id.resp_h: the IP address of the web server

+ proxied: identifies the proxy and the original IP address of the client

45

THREAT HUNTING GUIDE (_ corelight

For example, a client at IP 219.90.98.8 initiated this HTTP request. The request was proxied via 172.16.1.30 to the web server
at172.16.2.95.

host: www.totallyfakedomain.com

id.orig_h: 172.16.1.30 //the proxy

id.orig_p: 53,828

id.resp_h: 172.16.2.95 //the web server

id.resp_p: 80

method: POST

post_body: dXNlcm5hbWU9cm9vdCZwYXNzd29yZD1tb25rZXk=
proxied: X-FORWARDED-FOR -> 219.90.98.8 //the real client
status_code: 200

status_msg: OK

uri: /xmlrpc.php

user_agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
log: http

Using this example, identify the proxy and determine whether it's internal or external. If it's external, evaluate the session
and gain context, using Corelight data to decide whether or not to block it. If the proxy is internal, determine whether it's a
legitimate piece of IT infrastructure, or if it is a rogue proxy set up to circumvent policy—shadow IT.

Additionally, SOCKS is a commonly used proxy protocol that Corelight Sensors natively parse. When SOCKS is encountered, a
socks log is generated and records details on users and protocols. This information can be used to ensure that connections
aren't malicious and comply with policy. In the socks log, focus on these fields:

id.orig_h: the client IP address
id.resp_h: the proxy IP address
request: the domain or IP the client is attempting to access

user: if it is an authenticated connection, the user using the proxy

EXTERNAL PROXY DETECTED (OVERVIEW QUERY)

(#path="http" or #path="http_red") proxied[0]="*"
I(id.orig_h="10.*" or id.orig_h="192.168.*" or id.orig_h = /(*172\.1[6-9]\..*)/
or id.orig_h = /(*172\.2[8-9]\..*)/ OR id.orig_h = /(*172\.3[0-1]\..*)/
or id.orig_h="127.*" or id.orig_h="169.254.*" or id.orig_h="::1"
or id.orig_h="fe80::*" or id.orig_h="fc00::*")
| split(proxied)
| groupby(id.orig_h, function=[collect([proxied, id.resp_h, id.resp_p, user_agent, method,
host, uri], limit=10)])

46

THREAT HUNTING GUIDE (_ corelight

Web Service (T1102)

Attackers may use a legitimate external web service to relay data to and/or from a compromised system to hide in the noise.
While this tactic makes identification more difficult, Corelight data—especially the http, ss1, conn, and x509 logs—helps
you identify suspicious connections. Looking for I0Cs including URI, hostname, or specific certificate details (like SNI or CN) is
a good place to start. The following provides a few examples of certificate fields that might warrant an investigation:

path: x509

id: FfUGTX1VqS1qR30Jm7

certificate.version: 3

certificate.serial: 00

certificate.subject: emailAddress=obama@us.com,0=0bama inc.,L=Gaza City,ST=Gaza Strip,C=12,
CN=http://usrep3.reimage.com

certificate.issuer: emailAddress=obama@us.com,0=0bama inc.,L=Gaza City,ST=Gaza
Strip,C=12,CN=http://usrep3.reimage.com

certificate.not_valid_before: 2010-04-01T13:17:48.000000Z
certificate.not_valid_after: 2011-04-01T13:17:48.000000Z

certificate.key_alg: rsaEncryption

certificate.sig_alg: shalWithRSAEncryption

certificate.key_type: rsa

certificate.key_length: 1024

certificate.exponent: 65537

MULTIPLE ABNORMAL NON CONFORMING HTTP REQUESTS

(#path=weird or #path=weird_red) name=bad_HTTP_request

| groupby(id.resp_h, function=[collect([id.orig_h, id.resp_p, name, notice, source],
limit=10), count(id.orig_h, distinct=true, as="#_client")])

| #_client > 10

HTTP TRAFFIC WITH NO HTTP HOST SET OR USER AGENT SET
(#path="http" or #path="http_red") ((host=* user_agent!=*) or (user_agent=* host!=%*))

| groupby([id.orig_h], function=[collect([id.resp_h, id.resp_p, user_agent, method, host,
status_code, uri], limit=15)])

47

THREAT HUNTING GUIDE (_ corelight

EXFILTRATION (TA0010)

Automated Exfiltration (T1020)
If an attacker is using an automated means of exfiltration, data artifacts are captured in the Corelight data.

To look for exfiltration in your network, you can use a Zeek package developed to calculate Producer/Consumer Ratio
(PCR). PCR values indicate whether flows are consumptive (download) versus productive (upload). PCR values range from -1
(consumptive) to +1 (productive). To hunt for exfiltration using this package:

1. Install and enable a PCR package, or calculate it on-the-fly (example below).

2. Generate a table of id.orig_h, id.resp_h, id.resp_p, and pcr from the conn log.

3. Limityour results to records where local_origis true and local_resp is false to focus on outbound connections.
4. Reduce the results by filtering out records where pcr <=0.

5. For each host generating flows where pcr >= 0, consider whether that host is expected to transmit data outside
the network.

Another option is to use a SIEM to calculate the PCR using the information available in the Corelight conn log. The following
LogScale query creates a table organized by host that contains the originating and responding bytes and a PCR value.

#path=conn (orig_bytes>0 or resp_bytes>0) | groupby([id.orig_h, id.resp_h],
function=[sum(orig_bytes, as="sum_orig_bytes"), sum(resp_bytes, as="sum_resp_bytes")]) |
pcr:=(sum_orig_bytes-sum_resp_bytes)/(sum_orig_bytes+sum_resp_bytes)

Data Transfer Size Limits (T1030)
An attacker may attempt to transfer data or files by "chunking" them into smaller pieces, to avoid hard-coded data transfer
limits or thresholds. We will present two methods to hunt for this technique.

The first method analyzes data leaving the network based on source and destination pairs:
1. Generate a table from the conn log including the id.orig_h, id.resp_h, id.resp_p, and sum(orig_bytes).
2. Sortthe results by the largest sum(orig_bytes).

3. Examine each host and determine if there is a legitimate reason for uploads to that destination.

The second method analyzes the frequency, and sizes, of outbound transfers from each source:
1. Generate a table from the conn log including id.orig_h, id.resp_h, id.resp_p, and count(orig_bytes).
2. Sortthe results by the largest count(orig_bytes).

3. Examine the results and determine the reason for all the connections with the same amount of data flowing from the
source to the destination.

48

THREAT HUNTING GUIDE

(_ corelight

MULTIPLE FILES SENT OVER HTTP WITH ABNORMAL REQUESTS

(#path=http or #path=http_red) referrer!=* request_body_len>10000000

| split(orig_mime_types)

| in(orig_mime_types, values=["application/vnd.ms-cab-compressed", "application/warc",
"application/x-7z-compressed"”, "application/x-ace", "application/x-arc",
"application/x-archive"”, "application/x-arj", "application/x-compress",
"application/x-cpio"”, "application/x-dmg", "application/x-eet", "application/x-gzip",
"application/x-gzip", "application/x-lha", "application/x-lrzip", "application/x-1z4",
"application/x-1zma", "application/x-1zh", "application/x-lzip", "application/x-rar",
"application/x-rpm", "application/x-stuffit", "application/x-tar", "application/x-xz",
"application/x-zoo", "application/zip"])

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, method, host, orig_mime_types],

limit=15), sum(request_body_len, as="sum_request_bytes"), count(uid, distinct=true,
as="#_conns")])

| #_conns > 10

CLIENT SENDING LARGE AMOUNT OF DATA
(#path=conn or #path=conn_red) orig_bytes>1000000000 resp_bytes<100000000

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, service], limit=15),
sum(orig_bytes, as=sum_orig_bytes), sum(resp_bytes, as=sum_resp_bytes), count()])

CLIENT TRANSFERRING LARGE AMOUNT OF DATA OVER HTTP
(#path=http or #path=http_red) request_body_len>10000000

| groupby(id.orig_h, function=[collect([id.resp_h, id.resp_p, method, host, status_code,
uri, user_agent], limit=10), sum(request_body_len, as=sum_bytes), count()])

49

THREAT HUNTING GUIDE (_ corelight

REFERENCES

1.

2.

https://attack.mitre.org

When used as an intel indicator IP is considered brittle, due to the ease with which adversaries can move to a new
host or provider.

Not all versions of RDP assert the username in the cookie field. Some just assert nothing, or gibberish. In those
instances, you would have to infer it from the NTLM or Kerberos log.

https://www.wired.com/story/untold-story-2018-olympics-destroyer-cyberattack/

Please visit https://packages.zeek.org/ for additional information about Zeek packages

50

https://attack.mitre.org
https://www.wired.com/story/untold-story-2018-olympics-destroyer-cyberattack/
https://packages.zeek.org/

CORELIGHT OPEN NETWORK DETECTION & RESPONSE PLATFORM

Get a demo

Easily deployed and available in on-prem and SaaS-based formats, Corelight combines the
power of open source and proprietary technologies to deliver a complete Open Network
Detection & Response (NDR) Platform that includes intrusion detection (IDS), network
security monitoring, and Smart PCAP solutions.

https://corelight.com/products/demo

7 I\

71N

Corelight provides security teams with network evidence so they
can protect the world’s most critical organizations and companies.
Our Open Network Detection and Response Platform enhances
visibility and analytics, leading to faster investigations and expanded
. threat hunting. Corelight's global customers include Fortune
CJ CU[E | I g ht 500 companies, major government agencies, and large research
universities. Based in San Francisco, Corelight is an open-core

security company founded by the creators of Zeek®, the widely-used
network security technology.

info@corelight.com | 888-547-9497

The Z and Design mark and the ZEEK mark are trademarks and/or registered trademarks of the International Computer Science Institute in the United States and certain
other countries. The Licensed Marks are being used pursuant to a license agreement with the Institute.

All rights reserved. © Copyright 2026 Corelight, Inc.

http://corelight.com
https://corelight.com/products/demo

