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Abstract

We investigate the economic consequences of statistical learning for arbitrage

pricing in a high-dimensional setting. Arbitrageurs learn about alphas from historical

data. When alphas are weak and rare, estimation errors hinder arbitrageurs—even

those employing optimal machine learning techniques—from fully exploiting all true

pricing errors. This statistical limit to arbitrage widens the equilibrium bounds

of alphas beyond what traditional arbitrage pricing theory predicts, leading to a

significant divergence between the feasible Sharpe ratio achievable by arbitrageurs and

the unattainable theoretical maximum under perfect knowledge of alphas.
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1 Introduction

Full-information rational expectations models assume that economic agents have perfect

knowledge of the functional form and parameters of the data-generating process (DGP),

thereby bypassing the statistical challenges real-world agents encounter when estimating the

law of motion. While this assumption might be reasonable in a low-dimensional environment

with ample data for learning, many economic settings are more realistically high-dimensional,

with an unknown DGP and limited data. This raises important questions: How should

agents optimally learn in such environments, and what are the implications for equilibrium

outcomes? In this paper, we explore these questions in the context of asset market arbitrage.

The absence of near-arbitrage opportunities is a fundamental principle in most asset

pricing theories, including the Arbitrage Pricing Theory (APT). These theories implicitly

assume that if investment opportunities with exceptionally high reward-to-risk ratios were

to exist, they would attract arbitrageurs. Armed with knowledge of the functional form

and the parameters governing the DGP of returns, these arbitrageurs would exploit and, in

turn, eliminate such opportunities. In reality, however, sophisticated investors seeking near-

arbitrage opportunities lack perfect knowledge of the true functional form and parameters.

Instead, they rely on statistical analysis to infer the existence of such opportunities from

historical data, introducing statistical uncertainty. In some cases, such as derivatives pricing,

this uncertainty may be small enough that it does not significantly hinder arbitrage activity.

However, in noisier, high-dimensional settings like the cross-section of stock returns, statistical

uncertainty can be substantial, imposing a meaningful limit on arbitrage.

To analyze the effects of arbitrageur learning, we consider a setting in which returns

follow a statistical linear factor model. Near-arbitrage opportunities take the form of factor-

neutral trading strategies with high Sharpe ratios. Exploiting these opportunities requires

arbitrageurs to have knowledge of factor model alphas, which they must learn from historical

return data. We derive the optimal Sharpe ratio achievable by any feasible arbitrage trading

strategy, which is strictly dominated by the infeasible optimal Sharpe ratio that arbitrageurs

could achieve if they were endowed with perfect knowledge of alphas. This, in turn, provides

a new no-feasible-near-arbitrage bound on the Sharpe ratio that accounts for the statistical

limit to arbitrage.

The difficulty of the learning problem depends on the DGP of alpha signals. While our

theory does not generally rely on specific cross-sectional distributions of alpha signals, we use

simple special cases to illustrate how the optimal Sharpe ratio varies with the strength and

sparsity of alphas. When alphas are strong and not too rare relative to the dimensionality of

the cross-section and the sample size, arbitrageurs can, in the limit, perfectly learn the distri-
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bution of alpha. However, when alphas are weaker and more rare, inferring their distribution

becomes more challenging, creating a gap between the optimal feasible Sharpe ratio and the

infeasible Sharpe ratio that requires perfect knowledge of alphas. For instance, the infeasible

Sharpe ratio may explode asymptotically, while the feasible Sharpe ratio remains bounded.

The existence of this statistical limit to arbitrage implies that the range within which mis-

pricing can survive in equilibrium is broader compared to a scenario where arbitrageurs have

full knowledge of the DGP and its parameters. Mispricing can survive because it is obscured

by statistical uncertainty. Empirically, it is the feasible Sharpe ratio—not the unattainable,

infeasible one—that reveals the minimum reward-to-risk compensation arbitrageurs require.

We further demonstrate how arbitrageurs can construct a feasible trading strategy that

achieves the theoretically optimal feasible Sharpe ratio, uniformly over DGPs of alphas, re-

gardless of the strength and sparsity of alphas. This means that the feasible Sharpe ratio

bound is in fact sharp. A uniformly valid trading strategy is desirable because, in practice,

arbitrageurs do not know which DGP accurately represents the observed data. The opti-

mal strategy involves estimating the empirical distribution of alpha signals and assigning

portfolio weights based on the relative magnitudes and associated uncertainty of the alpha

estimates. Assets with high alpha t-statistics receive portfolio weights proportional to their

signal strength. Although weaker alphas are more difficult to exploit, ignoring them would

lead to a suboptimal strategy. Instead, the optimal approach constructs portfolio weights for

weak signals by locally smoothing alpha signals cross-sectionally.

To empirically contrast feasible and infeasible Sharpe ratios, we propose an estimator of

the infeasible Sharpe ratio that a hypothetical arbitrageur endowed with perfect knowledge

of DGP parameters would perceive. While this Sharpe ratio can be estimated consistently, it

cannot be achieved by any feasible portfolio with weights constructed using historical data.

The infeasible Sharpe ratio often serves as the foundation for tests of the APT, see, e.g.,

Gibbons et al. (1989), Gagliardini et al. (2016), Fan et al. (2015), and Pesaran and Yamagata

(2017). While these tests are powerful and can lead to the discovery of alpha signals, they are

not relevant for arbitrageurs limited to feasible trading strategies. Our effort in constructing

the optimal feasible arbitrage portfolio and evaluating its economic performance directly

responds to Shanken’s call to empirically assess the APT by “characterizing the investment

opportunities that are available as a consequence of the observed expected return deviation”

and “examining the extent to which we can approximate an arbitrage with existing assets”

(Shanken, 1992). Here we do so taking into account the statistical limits to arbitrage.

Under certain conditions, the optimal feasible arbitrage strategy can be approximated us-

ing alternative approaches such as multiple testing, shrinkage, and selection applied to alphas

estimated from cross-sectional regressions. These alternative approaches are used widely by
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empirical asset pricing researchers and practitioners, making it valuable to understand how

closely they approximate the optimal feasible strategy. A multiple-testing procedure as in

Benjamini and Hochberg (1995) (BH) seeks to prevent false alpha discoveries by applying a

p-value threshold that controls the false discovery rate (FDR), setting alphas that do not pass

this threshold to zero. The BH procedure achieves optimal performance only when a small

number of true alpha signals are strong; otherwise, it tends to be overly conservative, falling

short of optimality. Applying ridge-style shrinkage to portfolio weights yields a portfolio that

is equivalent to one constructed with alpha estimates from plain cross-sectional regressions

without shrinkage. This approach can achieve optimality when almost all true alphas are ei-

ther uniformly strong or uniformly weak. Lasso-based selection aims to balance the strengths

of the two previous methods, yielding a portfolio that closely approaches the theoretically

optimal feasible Sharpe ratio, provided an optimal tuning parameter is chosen.

Finally, we demonstrate the empirical implications of the statistical limits of arbitrage by

examining monthly equity returns in US stock market from 1965 to 2020. Our empirical analy-

sis has two parts. In the first part, we examine individual stock returns. We construct a multi-

factor model that uses observed stock characteristics as risk exposures. The characteristics

include 16 commonly used return predictors and 11 industry indicators. These characteristics

and industry dummies capture similar equity factors in the MSCI Barra model widely-used

among practitioners. In the second part, we analyze returns on 1,273 characteristics-sorted

portfolios and 49 industry portfolios, for which we construct latent factor models via singular

value decomposition, following Giglio and Xiu (2021). Data on characteristics and portfolio

returns in our empirical analysis is from Chen and Zimmermann (2020).1

For individual stocks, we estimate alphas as the averaged residuals in cross-sectional re-

gressions of stock returns on characteristics in 60-month rolling windows. The cross-sectional

R2s are relatively low, averaging around 8% over our sample period. This suggests that

learning alphas from realized returns is difficult, as the alphas are obscured by large amounts

of noise. Accordingly, only 7.58% and 1.12% of individual stocks’ alpha estimates have t-

statistics greater than 2.0 and 3.0, respectively, in absolute values. Even without accounting

for multiple testing, these estimates indicate that non-zero alphas are both rare and weak.

One may be concerned that these results may overstate the difficulty of learning alphas

because they use only realized returns as the only signal of alpha. Our analysis of portfolio

returns addresses these concerns. The large number of characteristics used to construct these

portfolios can be interpreted as signals of alphas, and the portfolios as managed investment

strategies that exploit the information in these signals. Although a latent factor model ac-

counts for a larger portion (around 35%) of the cross-sectional variation in realized portfolio

1See openassetpricing.com (Stock-level Signal Datasets August 2023 Release).

4

https://www.openassetpricing.com/


returns than the factor model for individual stock returns, we find that portfolio alphas still

exhibit notable rarity and weakness. This is particularly evident once we adjust for publica-

tion years, ensuring that portfolios are considered only after their sorting characteristics were

published in the previous years.

We then find, across both individual stocks and portfolios and using various methods, that

the optimal feasible arbitrage portfolios yield moderately low annualized Sharpe ratios below

0.7. In contrast, the infeasible Sharpe ratios are considerably higher, averaging more than 4.8

and reaching as high as 16 in some sample periods for individual stocks, and ranging from 5

to 20 for portfolios. These infeasible Sharpe ratios represent what arbitrageurs could achieve

with perfect knowledge of the DGP parameters. The large gap between feasible and infeasible

Sharpe ratios highlights the empirical significance of the statistical limits to arbitrage. When

these statistical limits to arbitrage are taken into account, the empirical facts are in line with

the implication of the APT that near-arbitrage opportunities should be absent.

Our paper builds on a large literature on the arbitrage pricing theory (APT) developed

by Ross (1976) and later refined by Huberman (1982), Chamberlain and Rothschild (1983),

and Ingersoll (1984). As in these foundational studies, we employ asymptotic arguments

that avoid imposing strong structural assumptions about the economy. The results of this

analysis should be interpreted as an asymptotic approximation for a more realistic setting

with a finite number of assets. The key point is that weak economic restrictions rule out

Sharpe ratios far above the Sharpe ratios of diversified factor portfolios. Different from earlier

work on the APT, we show in this paper that the statistical limit to arbitrage dramatically

widens this Sharpe ratio bound compared with an economy in which arbitrageurs are endowed

with perfect knowledge of DGP parameters. In this regard, our paper is also related to the

literature on the limits of arbitrage reviewed in Gromb and Vayanos (2010). Complementary

to this literature, the arbitrage limit in our setting stems from statistical uncertainty, rather

than from risk, costs, frictions, and other constraints faced by arbitrageurs.

Our paper provides a solution to a long standing problem in optimal portfolio choice under

parameter uncertainty. Historically, the plug-in mean-variance portfolio, which is based on

sample means and covariance matrices, has been criticized for underperforming. Assuming

normally distributed returns, Kan and Zhou (2007) study the expected performance of this

portfolio and observe that its Sharpe ratio is below its theoretical value. Further studies by Tu

and Zhou (2010) and Kan et al. (2022) expand their analysis by exploring alternative portfolio

rules that aim to minimize utility loss under estimation uncertainty. However, these studies

only identify optimal solutions within a predetermined class of strategies, which does not

reflect the flexibility investors have in practice to choose any perceived superior strategy. In

contrast, our study identifies an upper bound for all feasible Sharpe ratios without imposing
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restrictions on the choice of strategies. Our analytical framework is primarily concerned with

arbitrage portfolios, but our results are broadly applicable to optimal portfolios in general,

thus providing a solution to this classic problem.

A closely related paper to ours is Kim et al. (2020), which proposes a characteristics-

based factor model to construct feasible arbitrage portfolios. Their asymptotic theory does

not preclude arbitrage opportunities with a theoretically infinite Sharpe ratio, which implies a

rather strong signal-to-noise ratio in their alpha signals. Our setting is considerably different

in that the premise of our framework rules out infinite feasible Sharpe ratios, which enforces

weak and rare signals. In our setting, alphas cannot possibly be recovered with certainty

even when the sample size is large.2

Our paper also contributes to the evolving literature on applications of statistical and

machine learning in asset pricing, and in particular on the topic of testing the APT, e.g.,

Gibbons et al. (1989), Gagliardini et al. (2016), and Fan et al. (2015), as well as on testing

for alphas, e.g., Barras et al. (2010), Harvey and Liu (2020), and Giglio et al. (2021). The

first literature focuses on testing a null that all alphas are equal to zero. This is certainly an

interesting null hypothesis. However, as we emphasize in this paper, an economically sensible

interpretation of the APT should allow for statistical limits to arbitrage. This means that

the APT does allow for non-zero alphas as long as they do not induce an explosive feasible

Sharpe ratio. The second literature focuses on detecting strong alphas, applying multiple

testing methods, such as the BH method, or extensions thereof, to control the FDR. In

contrast, we allow for rare and weak alpha signals such that any procedure aiming to control

the FDR is too conservative with too few or no discoveries.3 Our objective here is not on

model testing or signal detection. Rather, we strive for the optimal economic performance of

arbitrage portfolios. We show that even if signals were so weak that they are undetectable

by multiple testing methods, they may lead to a portfolio with a considerable Sharpe ratio.

In macroeconomics and finance, rational expectation models in which decision makers

are not confronted with statistical uncertainty about the structure of the economy have

attracted criticism (Hansen, 2007). Bayesian learning is one way to expose model decision

makers to statistical uncertainty. Pastor and Veronesi (2009) survey the literature on learning

in financial markets. In many settings, e.g., Collin-Dufresne et al. (2016), learning can be

sufficiently slow such that its effects persist in empirically realistic sample sizes, even though

2On the empirical side, Guijarro-Ordonez et al. (2022) propose a deep learning approach to statistical
arbitrage that achieves a sizable out-of-sample Sharpe ratio. The profits of their trading strategy stem from
generalized return reversals at daily to weekly frequencies, potentially due to liquidity provision and other
microstructure channels. Our empirical analysis is not targeted towards characterizing the reward-to-risk
ratios for high frequency traders, nor for traders that turnover a large portion of their portfolios daily.

3Donoho and Jin (2004) adopt the so-called higher criticism approach, dating back to Tukey (1976), to
detect rare and weak signals in a stylized multiple testing problem.
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convergence to rational expectations takes place in the long-run. An exception is Martin

and Nagel (2021) where learning effects persist because investors face a high-dimensional

inference problem about the process generating firm cash flows. Similarly, arbitrageurs in our

model attempt to make inference on a high-dimensional parameter vector with a potentially

insufficient sample size, but they learn about returns, not firms’ underlying cash flows. We

examine different sequences of DGPs and in most scenarios, our learning system does not

converge to a rational expectations limit.4

Our paper is also related to Chen et al. (2021b) and Chen et al. (2021a) in that they

also account for the distinction between beliefs of economic agents and the DGP revealed

by empirical evidence. They model belief distortions as a change of measure in moment

conditions, use statistical measures of divergence relative to rational expectations to bound

the set of subjective probabilities, and seek robust inference with respect to this form of

misspecification. In the spirit of Hansen (2014), we calculate an optimal feasible Sharpe

ratio for arbitrageurs inside the economic model, which differs from the infeasible one as it

appears to an econometrician outside the model. In our setting, the deviation from rational

expectations stems naturally from the statistical obstacles faced by economic agents. A more

subtle but important point is that the outcomes attainable by economic agents embracing

machine learning methods in a high-dimensional environment differ from those that ratio-

nal expectation agents endowed with knowledge of the economy’s structure could achieve

asymptotically.

The literature on portfolio choice through Bayesian and economic decision-theoretical

perspectives is extensive, as outlined in the survey by Avramov and Zhou (2010). Early

works like those by Jorion (1986) and Frost and Savarino (1986) highlight the advantages

of using Bayes-Stein shrinkage solutions. Further contributions in this topic incorporate

informative and economically motivated priors, as in Black and Litterman (1992), Pastor

(2000), and Pastor and Stambaugh (2000). In our context, the optimal portfolio weights

are proportional to the posterior mean of alpha. This resembles the classical normal mean

problem in empirical Bayes, dating back to Robbins (1956), where the unknown parameters

(alphas) are regarded as random draws from some common distribution, and only a noisy

version (realized ex-factor returns) is observed. Our nonparametric approach thereby shares

the same spirit of nonparametric empirical Bayes, see, e.g., Johns (1957), Zhang (1997),

and Brown and Greenshtein (2009). Yet unlike the classical empirical Bayes inference, our

analysis allows for weak and rare alphas as motivated from economic restrictions, and also

considers Sharpe ratios, not only the posterior mean of alphas.

4Our analysis is related to a large literature in econometrics and statistics that discuss uniform validity of
asymptotic approximations, see, e.g., Staiger and Stock (1997), Imbens and Manski (2004), Leeb and Pötscher
(2005), Andrews et al. (2020).
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Our paper proceeds as follows. Section 2 develops our main result on the statistical limit

to arbitrage. Specifically, Section 2.1 sets up the model, Section 2.2 motivates and then

defines the feasibility constraint facing arbitrageurs, Sections 2.3 - 2.4 specify arbitrageurs’

decision problem, derive the optimal strategy, illustrate the Bayes correction for alpha, and

demonstrate the gap between feasible and infeasible Sharpe ratios, Section 2.5 constructs

a feasible trading strategy that achieves the bound, Section 2.6 proposes an estimator of

the infeasible Sharpe ratio, and finally Section 2.7 analyzes alternative strategies. Section

3 provides simulation evidence, followed by an empirical analysis in Section 4. Section 5

concludes. The appendix provides additional empirical and theoretical results, as well as all

the technical details.

2 Main Theoretical Results

We start by revisiting the arbitrage pricing theory framework developed by Ross (1976).

This theory is primarily based on a reduced-form statistical model for asset returns, which,

despite its stylized nature, offers significant theoretical insights and remains relevant for

guiding empirical investment decisions.

2.1 Factor Model Setup

The factor economy has N assets in the investment universe. The N × 1 vector of excess

returns rt follows a reduced-form linear factor model:

rt = α + βγ + βvt + ut, (1)

where β is an N ×K matrix of factor exposures (with the first column being a vector of 1s),

α is an N × 1 vector of pricing errors, vt is a K × 1 vector of zero-mean factor innovations

with covariance matrix Σv, γ is a K×1 vector of risk premia (first entry corresponding to the

column of 1s is the zero beta rate), and ut is a vector of idiosyncratic returns with a diagonal

covariance matrix Σu and zero mean conditional on all the variables before time-t.5

We assume at any given time t, arbitrageurs examine a sample of size T , derived from

Equation (1), spanning from t − T + 1 to t. Throughout we will consider asymptotic limits

as N and T increase while K and t are fixed.6 To facilitate our asymptotic analysis along

5While approximate factor models become more prevalent following Chamberlain and Rothschild (1983),
allowing for off-diagonal entries in the covariance matrix Σu would introduce additional statistical obstacles
due to the estimation of large covariance matrix for inference on alpha and for building optimal portfolios.
For simplicity, we illustrate the economic consequences of statistical limits to arbitrage using a strict factor
model. We discuss violations of these model assumptions later.

6 This framework presents a slight deviation from the conventional scenario in which arbitrageurs observe
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the cross-sectional dimension, N , we regard high dimensional objects such as α, β, and Σu

as random variables drawn from some cross-sectional distributions, whereas γ and Σv are

regarded as deterministic parameters. This distinction is made because γ and Σv serve as

nuisance parameters in our analysis and their dimensions remain fixed. We assume that α

has mean zero, and is cross-sectionally independent of β. These conditions are essential for

identification of γ in a model that allows for pricing errors. We formalize these conditions

below.

To allow for a more general DGP, we may consider a conditional version of (1):

rt = αt−1 + βt−1γt−1 + βt−1vt + ut, (2)

where βt is a vector of time-varying factor loadings and γt is a vector of time-varying risk

premia.7 Despite the conditional model’s greater generality, it does not provide additional

economic insights in our analysis of the theoretical limits of arbitrage, compared with the

unconditional model. While our primary theoretical findings, such as those provided in

Theorems 1 and 2, remain applicable when β is substituted with βt, we concentrate, for

clarity, on the more stylized model (1) to illustrate our theory.

There are at least three variations of the factor model, depending on what econometricians

assume to be observable. The most common setup in the academic finance literature imposes

that factors are observable as, e.g., in Fama and French (1993).8 The second setting, which

has gained more popularity recently since its debut in Connor and Korajczyk (1986), assumes

that factors are latent. The third setting, arguably most prevalent among practitioners, is

the MSCI Barra model originally proposed by Rosenberg (1974), where factor exposures are

equal to stock characteristics and hence observable.9 One notable advantage of this model is

that it sidesteps the statistically and computationally demanding task of estimating a large

number of potentially time-varying stock-level factor exposures. In our empirical work, we

prefer to use the MSCI Barra model for its practicality in analyzing individual stock returns,

a sample spanning t = 1, . . . , T and make their investment decision at time T + 1. Essentially, our approach
highlights the continuous process of making investment decisions, rather than conceiving these decisions as
occurring at a single, distant future point, T . That said, this conceptual difference does not result in any
tangible difference in our theoretical and empirical results.

7This model is overly parametrized that parameters are not identifiable without additional restrictions.
Some examples of parsimonious conditional factor models include Connor et al. (2012), Gagliardini et al.
(2016), and Kelly et al. (2019).

8This is different from saying factor innovations, vt, are observable. The setting of observable factors
typically involves another equation that ft = µ + vt, where µ are the population means of the observed
factors ft, which are not necessarily identical to the factor risk premia, γ. Since µ is an unknown parameter,
vt is still not observable.

9See Kozak and Nagel (2023) on the conditions on factor construction and return covariance matrix that
must hold for characteristics to equal factor loadings.
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adhering to (2) but with a constant alpha.10

The constant alpha assumption in our theoretical analysis may seem restrictive. In prac-

tice, arbitrageurs may make use of trading signals that capture time-variation in individual

stock’s alphas. Our framework can in fact easily accommodate this if we assume that (2)

holds with αt = ctα and βt = ctβ for certain characteristics ct that represent arbitrageurs’

signals, then projecting returns onto lagged characteristics results in:

(cᵀt−1ct−1)−1cᵀt−1rt = α + β(γt−1 + vt) + (cᵀt−1ct−1)−1cᵀt−1ut. (3)

This transformation converts a conditional model for individual stocks with time-varying

alphas into an unconditional latent factor model for managed portfolios, (cᵀt−1ct−1)−1cᵀt−1rt,

with constant alphas as in (1). Thus, via these managed portfolios, our theoretical frame-

work also applies to a setting in which arbitrageurs make use of signals about time-varying

individual stock alphas. Empirically, we therefore also examine returns on portfolios formed

on a large number of stock characteristics, in addition to the individual stock analysis.

2.2 Feasible Near-Arbitrage Opportunities

Building upon the insight of Ross (1976), Huberman (1982) and Ingersoll (1984) established

the concept of near-arbitrage, which can be formalized in a more general setting as below:

Definition 1. A portfolio strategy w at time t is said to generate a near-arbitrage under

a sequence of data-generating processes, such as (1), defined in a filtered probability space

(Ω,F , {Fs}s≤t,P), where Ft contains information generated by α, β, {rs, vs, us}s≤t, if it sat-

isfies w ∈ Ft, and along some diverging subsequence,11 with probability approaching one,

Var(wᵀrt+1|Ft)→ 0, E(wᵀrt+1|Ft) ≥ δ > 0.

Intuitively, no near-arbitrage means there exists no sequence of portfolios that earn posi-

tive expected returns with vanishing risks. Ingersoll (1984) established that a sufficient and

necessary condition for the absence of near-arbitrage is that12

S? :=
√
αᵀΣ−1

u α .P 1. (4)

10Empirically, we use a moving window method for alpha estimation, which effectively allows alphas to
vary slowly over time.

11We adopt the same subsequence definition as that used in Ingersoll (1984). The subsequence typically
depends on the count of investment opportunities, i.e., N , though we do not need make this explicit in this
definition. For simplicity of notation and without ambiguity, we omit the dependence of w on N and t.

12We use the notation a . b to denote a ≤ Cb for some constant C > 0, a .P b to denote a = OP(b), a h b
if a . b and b . a, and use a hP b accordingly. Throughout, cN represent some sequence vanishing with N .
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Here, S? is the theoretically optimal Sharpe ratio arbitrageurs can achieve in this economy us-

ing a portfolio strategy that has zero exposure to factor risks, namely, a “statistical arbitrage”

strategy in the jargon of practitioners. This result suggests that moderate mispricing in the

form of nonzero alphas is permitted in an economy without near-arbitrage opportunities, but

there cannot be too many alphas that are too large, to the extent that S? explodes.13

To achieve this optimal Sharpe ratio, arbitrageurs should hold a factor-neutral portfolio

with weights given by w? ∝ Σ−1
u α, according to Ingersoll (1984).14 His analysis assumes

that arbitrageurs know the true (population) parameters: α and Σu. In reality, however, the

true parameters are unknown to arbitrageurs as they only have a finite sample of data to

learn about these parameters. The consequences of such parameter uncertainty can be minor

in some contexts if the true parameters are revealed asymptotically and model predictions

converge to those of a rational expectations model in which agents are endowed with perfect

knowledge of parameters. Fundamentally, this requires that the learning problem in the

limiting experiment becomes increasingly simpler as the sample size increases.

In the current context, the difficulty of the learning problem also hinges on the number

of investment opportunities, N . As N increases, for a given sample size T , it becomes

increasingly difficult for arbitrageurs to determine which assets truly have nonzero alphas.

If the learning problem remains difficult as N and T increase, the learning effect persists,

which could lead to limiting implications that differ from the rational expectation case. In

our setting, it turns out that the rational expectation limit S? is only relevant for rather

restrictive scenarios. In more realistic settings, e.g., N is much larger than T , the optimal

Sharpe ratio arbitrageurs can achieve without factor exposures is far smaller than S? because

of their inability to make error-free inference. Therefore, the condition (4) could be excessively

restrictive in such scenarios.

To illustrate this intuition, we consider a simple and specific example.

Example 1. Suppose the cross-section of alphas is drawn from the following distribution:

13Assuming αi is i.i.d. and λmax(Σu) .P 1, by equation (4), we have αᵀα .P α
ᵀλmin(Σ−1u )α .P α

ᵀΣ−1u α .P

1, so that E(α2
i ) = o(1) by the law of large numbers.

14In Ingersoll (1984), α is defined to be the cross-sectional projection of the expected returns onto β in the
population model, such that αᵀΣ−1u β = 0. As a result, his arbitrage portfolio weights are factor neutral, i.e.,
w?ᵀβ = 0 by construction. In contrast, our paper sets forth a predetermined DGP as specified in (1), where
α is modeled as a random variable with the property E(αᵀβ) = 0. Consequently, the factor-neutral optimal
strategy derived in Theorem 1 and illustrated by (10) does not exactly align with the formula presented by
Ingersoll (1984). Under our DGP assumptions, Ingersoll’s portfolio weights are not strictly factor-neutral.
Nonetheless, we can show that our optimal portfolio weights remain factor-neutral, and achieve the same
Sharpe ratio S? asymptotically as N increases.
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αi
i.i.d.∼


µ with prob. ρ/2

−µ with prob. ρ/2

0 with prob. 1− ρ
, 1 ≤ i ≤ N, (5)

where µ ≥ 0 and 0 ≤ ρ ≤ 1, and they potentially vary with N and T . In addition, we also

assume β = 0, Σu = σ2IN , for some σ > 0. Consequently, equation (1) becomes rt = α + ut.

In this example, µ dictates the strength of alphas, ρ describes how rare alphas are, whereas

σ is a nuisance parameter. By modeling parameters µ and ρ as functions of the sample size and

dimension of the investment set, we introduce greater flexibility in depicting the challenges

arbitrageurs encounter in finite sample situations.15 To emphasize the role of signal strength

and count, we impose in this example that all assets share the same alpha distribution and

the same idiosyncratic variance.

Now suppose, more specifically, that the magnitude of (µ, ρ) satisfies

µ h T−1/2 and ρ h N−1/2. (6)

This condition (6) implies that the signal strength µ vanishes as the sample size increases

(T → ∞) and the signal percentage count ρ decays as the investment universe expands

(N → ∞). This setup is used to approximate a situation in which only a small portion of

assets have a nonzero and small alpha. On the other hand, σ is assumed to be fixed, since

in reality idiosyncratic risks never vanish, whereas alphas can be small due to competition

among arbitrageurs. This model resides in an uncommon territory in the existing literature

of asset pricing: weak and rare alphas. In fact, the classical no-near-arbitrage condition

(4) imposes, implicitly, weakness or rareness on alphas; otherwise, if alphas were strong and

dense, αᵀα would explode rather rapidly. Even in the current setting, in light of the fact

that E(αᵀα) = ρµ2N , we still have αᵀα
P−→ ∞ as long as N1/2/T → ∞. In other words, a

near-arbitrage opportunity arises according to (4), with a strategy w = σ−2α.

However, statistical uncertainty prevents arbitrageurs from having this “free lunch.” In

general, it is only possible to recover any element of alpha up to some estimation error of

magnitude T−1/2.16 Since, by design, the true alpha is of the same order of magnitude as its

level of statistical uncertainty, i.e., µ h T−1/2, it is impossible for arbitrageurs to determine

15Adopting a drifting sequence for parameters is a common trick in econometrics to provide more accurate
finite sample approximations. As Bekker (1994) put, “in evaluating the results, it is important to keep in mind
that the parameter sequence is designed to make the asymptotic distribution fit the finite sample distribution
better. It is completely irrelevant whether or not further sampling will lead to samples conforming to this
sequence or not.”

16Giglio et al. (2021) develop the asymptotic normality result for alpha estimates via a Fama-MacBeth
procedure in various scenarios, in which factors are (partially) observable or latent whereas β is unknown.
The CLTs in these scenarios share the same form: for any 1 ≤ i ≤ N ,
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precisely which assets among all have nonzero alpha.

For illustration purpose, suppose that arbitrageurs adopt the strategy ŵ = σ−2α̂,17 re-

placing α in w with α̂ = r̄ = α + ū.18 Out of sample, this portfolio’s conditional expected

return and conditional variance can be written as:

E
(
σ−2 (α + ū)ᵀ (α + ut+1)|Ft

)
= σ−2(αᵀα + ūᵀα),

Var
(
σ−2 (α + ū)ᵀ (α + ut+1)|Ft

)
= σ−2(αᵀα + 2αᵀū+ ūᵀū),

where ut+1 denotes a future de-meaned return at t + 1, that shares the same distribution

as {us}s≤t, but is independent of ū which belongs to the information set up to t, Ft. The

resulting squared conditional Sharpe ratio is given by:

S2 =
σ−4(αᵀα + ūᵀα)2

σ−2(αᵀα + 2αᵀū+ ūᵀū)
.P T

−1 → 0, (8)

where we use the fact that ūᵀū hP N/T when ut is i.i.d.. In other words, this portfolio

achieves a Sharpe ratio equal to zero asymptotically.

Is there a superior trading strategy capable of maintaining a non-vanishing Sharpe ratio?

The straightforward answer is no. Our discussion below will elucidate that, within this

context, namely, (6) holds true, the highest achievable Sharpe ratio for all feasible trading

strategies employed by arbitrageurs, represented as SOPT, vanishes asymptotically as N, T →
∞. Conversely, the infeasible optimal Sharpe ratio, denoted S?, diverges under the condition

that N1/2/T → ∞. There is a vast disparity, as shown by this example, between SOPT and

S?.

The difference between feasible and infeasible strategies is primarily driven by the infor-

mation set accessible to arbitrageurs when they implement their trading strategies. In this

example, the infeasible strategy assumes that arbitrageurs have access to a comprehensive

information set, Ft, that encompasses the knowledge of α. This knowledge proves to be

extremely valuable when α is both rare and weak, which creates significant gap between this

strategy and others that lack access to such information.

To clarify, we formalize the definitions as follows:

√
T (α̂i − αi)

d−→ N (0, σ2
i (1 + γᵀ(Σv)

−1γ)), (7)

where σ2
i is the ith entry of Σu. In the case that β is observable (but factors are not), we can show that the

CLT has a similar form except that the scalar (1 + γᵀ(Σv)
−1γ) disappears.

17The knowledge of σ is ultimately inconsequential for our purposes, as we will demonstrate subsequently
for a more general setting. Despite σ being known, this strategy fails to yield any positive Sharpe ratio.

18For any time series of random vector at, we use ā to denote its sample average. As we will point out later
in the paper, this strategy ŵ, which we will denote by ŵCSR, fails to achieve the optimal Sharpe ratio in all
scenarios. We will discuss the optimal strategy in Section 2.5.
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Definition 2. A strategy is deemed feasible when it relies solely on observable data, in stark

contrast to an infeasible strategy that presupposes complete knowledge of the DGP, encapsu-

lated by the full information set, Ft.

Recognizing the distinction between feasible and infeasible strategies, we proceed to in-

vestigate the maximum Sharpe ratio attainable by feasible strategies. This exploration ne-

cessitates defining the decision-making problem faced by arbitrageurs, which we turn to next.

2.3 Arbitrageurs’ Decision Problem and Feasible Sharpe Ratio Bound

In the broader context of the DGP, given by equation (1), the information set Ft not only

includes α and {rs}s≤t but also other variables such as Σu, β, and {vs}s≤t, alongside unknown

parameters like Σv and γ. For a strategy to be considered feasible, it must refrain from

leveraging these unknown variables and parameters. This constraint introduces complexity

to the arbitrageurs’ decision-making process by intertwining optimization with statistical

techniques, resulting in solutions that are not uniquely defined.

Recognizing that the disparity in Sharpe ratios between infeasible and feasible strategies

primarily stems from the challenges of learning about α, we seek to navigate this complexity

by considering a broader set of trading strategies. These strategies deliberately exclude re-

liance on information about α, although they may not all be feasible. Given this constraint,

we derive an upper bound for the Sharpe ratio that applies to all such strategies, and by

extension, to all feasible strategies, since they similarly avoid using information on α. How-

ever, this upper bound may not be achievable by a feasible strategy, as the derivation does

not preclude the use of potentially infeasible information on other variables, such as Σu. In

Section 2.5, we demonstrate that it is indeed possible to attain this upper bound with a well-

crafted feasible trading strategy. Consequently, even without perfect knowledge about other

variables and parameters, arbitrageurs can effectively use statistical inference to estimate

these unknowns, with the statistical error of such estimates diminishing asymptotically. This

highlights that the main hurdle for arbitrageurs is not in learning about factors, volatilities,

or risk premia, but in acquiring knowledge about α.

We are now ready to characterize the decision problem arbitrageurs confront. Operating

under a certain information set, G, a subset of Ft, arbitrageurs at time t are tasked with

solving a mean-variance optimization problem expressed as:

w̃ = arg max
w∈G:wᵀβ=0

U(w), where U(w) = E
(
wᵀrt+1

∣∣G)− κ

2
Var

(
wᵀrt+1

∣∣G) ,
and κ measures the degree of risk aversion. Our objective is to identify the optimal strategy

subject to the measurability constraint: w ∈ G. Given the necessity for statistical arbitrage
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to be factor-neutral, the strategy w must be orthogonal to β, with β being predetermined,

i.e., β ∈ G.

To streamline the portfolio formation process, we exclude transaction cost considerations,

which yields a static, single-period optimization problem. Thus, we omit subscript t whenever

possible. This approach aligns with the APT framework introduced by Ross (1976), where the

arbitrageurs’ chosen strategy aims to eliminate exposure to systematic factors, concentrating

instead on capitalizing on alphas and balancing idiosyncratic risks. Arbitrageurs’ utility is

modeled as a Bayesian posterior expected loss, a concept discussed in Berger (1985). The

next theorem presents a solution with minimal conditions on G.

Theorem 1. Suppose that rt follows (1) and that β is G-measurable. It holds that

w̃ =
1

κ
Σ̃−1/2
u M

Σ̃
−1/2
u β

Σ̃−1/2
u α̃, (9)

where α̃ := E(α|G) and Σ̃u := E(Σu|G) + Var(α|G).19

This result associates the optimal strategy with the posterior summary statistics of α

and Σu. Essentially, the choice of the optimal G-measurable strategy is determined by arbi-

trageurs’ best parameter estimates based on their information set, rather than the true values

of the unknown parameters. In the special scenario where G = Ft, meaning arbitrageurs pos-

sess complete information up to time t, we have α̃ = α, and Σ̃u = Σu. Under these conditions,

the optimal infeasible strategy, denoted by w?, is given by

w? =
1

κ
Σ−1/2
u M

Σ
−1/2
u β

Σ−1/2
u α. (10)

Moving forward, our attention is directed towards a specific choice of G as generated by

{(rs, β, vs,Σu) : t − T + 1 ≤ s ≤ t}.20 Accordingly, w̃ is assumed associated with this

particular choice by default hereafter.

Next, we examine the investment performance of arbitrageurs’ optimal strategy, w̃. It

is important to note that in evaluating a strategy, the conditional Sharpe ratio is calcu-

lated based on the comprehensive information set, Ft, rather than the arbitrageurs’ specific

information set, G. For any given strategy w, its conditional Sharpe ratio is defined as:

S(w) := E(wᵀrt+1|Ft)/Var(wᵀrt+1|Ft)1/2.

19MA = I−A(AᵀA)−1Aᵀ for any matrix A.
20The nuisance parameters γ and Σv are deterministic constants and, as such, are encompassed within

any information set. Although they are part of G, their presence does not influence the optimal strategy of
arbitrageurs.
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To describe the asymptotic behavior of a strategy, we need to impose assumptions on the

return generating process:

Assumption 1. For each N ≥ 1, the following conditions hold:

(a) (αi, ui) is i.i.d. across i, and satisfies E(αi|(Σu)i,i) = 0 and E‖α‖2
MAX = o(1). Moreover,

it holds that 1 .P λmin(Σu) ≤ λmax(Σu) .P 1.21

(b) The pricing errors α, factors vt, factor loadings β, and idiosyncratic errors ut are,

conditionally on Σu, mutually independent.

Condition (a) suggests that the alphas in our model are inherently weak; as the number

of assets, N , increases, their magnitudes diminish.22 Moreover, this condition ensures that

volatilities remain within upper and lower bounds. Condition (a) therefore implies that

learning about alpha is a more arduous task than learning about volatilities. Condition (b)

is imperative for the model’s identification. For instance, assuming independence between α

and β is key to identify the risk premia, γ, see, e.g., Giglio et al. (2022).

Given this assumption, the subsequent theorem illustrates that the optimal strategy w̃

yields a Sharpe ratio that is nearly at its maximum.

Theorem 2. Suppose that rt follows (1) and that Assumption 1 holds. Let G represent the

information set generated by {(rs, β, vs,Σu) : t− T + 1 ≤ s ≤ t}. For any strategy w that is

both G-measurable and factor-neutral, it follows that as N →∞,

S(w) ≤ S(G) + oP(1 + S(G)), (11)

where S(G)2 = α̃ᵀΣ−1
u α̃, and the equality in (11) holds if w = w̃. Moreover, the optimal

strategy for arbitrageurs, w̃, has a simple approximation:∥∥∥∥w̃ − 1

κ
MβΣ−1

u α̃

∥∥∥∥ = oP(1 + S(G)). (12)

Accordingly, their optimal utility satisfies
√

2κU(w̃) = S(G) + oP(1 + S(G)).

Theorem 2 derives an upper bound, denoted as S(G), on the Sharpe ratio that any G-

measurable strategy can attain. This upper bound also connects with arbitrageurs’ optimal

21For a matrix A, we use ‖A‖ and ‖A‖MAX = maxi,j |aij | to denote the operator norm (or `2 norm) and
the `∞ norm of A on the vector space. We use λmin(A) and λmax(A) to denote the minimum and maximum
eigenvalues of A.

22By Assumption 1(a), Var(αi) = E(α2
i ) = o(1). Referencing our earlier discussion (footnote 13), a dimin-

ishing variance in α is essential for precluding near-arbitrage opportunities within Ross’ APT framework.
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utility. By the definition of S(G), this upper bound satisfies

E
(
S(G)2

)
≤ E

(
αᵀΣ−1

u α
)
, (13)

where the equality holds only when α̃ = α almost surely. The right-hand side corresponds to

the infeasible scenario in which arbitrageurs have perfect knowledge of α, which echoes (4).

Furthermore, the result demonstrates that the optimal strategy, as articulated in Theorem

1, can reach this upper bound with a negligible approximation error. In scenarios where S(G)

is finite, that is OP(1), the error term oP(1+S(G)) reduces to oP(1) and vanishes in the limit.

The theorem additionally addresses situations where S(G) may diverge. In this case, the

approximation error is reduced to oP(S(G)), remaining inconsequentially small relative to

S(G) itself.

Also, Equation (12) offers a more straightforward and intuitive formula for approximating

the optimal feasible strategy, w̃. Additionally, as a byproduct of Theorem 2, the optimal

infeasible strategy in Equation (10) can also be approximated in a simpler form:∥∥∥∥w? − 1

κ
MβΣ−1

u α

∥∥∥∥ = oP(1 + S?), (14)

which represents a special case of Equation (12) where G is set as Ft. At its core, it is α̃, the

posterior estimate of the pricing errors that dictates the optimal Sharpe ratio achievable by

arbitrageurs, rather than the true α. Intuitively, part of the construction in (12), Σ−1
u α̃, is the

optimal allocation to the ex-factor returns, α+ ut = rt − β(γ + vt), based on a simple mean-

variance analysis, except for the use of α̃, because arbitrageurs do not observe true alphas

in the DGP. Pre-multiplying Σ−1
u α̃ by Mβ simply eliminates the portfolio’s factor exposures,

because (MβΣ−1
u α̃)ᵀβ = 0.

Theorems 1 and 2 are concerned with factor-neutral strategies, as our main results focus

on the limits of arbitrage. Proposition B1 in our appendix broadens this scope to encompass

any strategy, revealing that any G-measurable strategy, w, adheres to a similar upper limit:

S(w) ≤
(
S(G)2 + γᵀΣ−1

v γ
)1/2

+ oP(1 + S(G)), (15)

where γᵀΣ−1
v γ is the squared optimal Sharpe ratio earned from the factor portfolios.

This result addresses a longstanding challenge in optimal portfolio choice under parameter

uncertainty. Kan and Zhou (2007) examine the expected performance of the plug-in mean-

variance portfolio and find that its Sharpe ratio is smaller than the infeasible Sharpe ratio,

S?. To construct a solution, they consider a limited class of trading strategies that does not

accommodate the broad range of strategies investors might consider in real-world scenarios.
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In contrast, by imposing only mild restrictions on the DGP of returns, equation (15) identifies

an upper bound for all feasible Sharpe ratios without limiting the choice of strategies.

The result in Theorem 2 appears to require that arbitrageurs rely on the information

set G, which embodies perfect knowledge of factors, vt, and their exposures, β, in addition

to past asset returns, rt. Moreover, arbitrageurs appear to have perfect knowledge of the

covariance matrix of idiosyncratic errors, Σu. In fact, the upper bound in (15) still holds if

arbitrageurs are endowed with less information, because for any information sets G ′ and G
such that G ′ ⊆ G, we have E(S(G ′)2) ≤ E(S(G)2). Since all feasible strategies are measurable

with respect to G, S(G) establishes an upper bound for the Sharpe ratio applicable to this

set of strategies, although it may not be sharp. In light of this and Definitions 1 and 2,

we immediately obtain a sufficient condition of the absence of near-arbitrage with feasible

strategies:

Corollary 1. Suppose the same assumptions as in Theorem 2 hold. For any given return-

generating process satisfying (1), there exists no feasible factor-neutral strategy that leads to

a near-arbitrage, if

S(G) .P 1, as N →∞. (16)

2.4 Bayes Correction for Selection Bias

While the previous discussion underscored the role of the posterior mean of α, denoted as

α̃ = E(α|G), on the optimal G-measurable portfolio, this expression remains implicit and not

directly actionable. Our focus now shifts to reducing the information set G to its sufficient

statistics for α. This step is crucial for understanding why α̃ leads to enhanced portfolio

performance. To facilitate this analysis, we introduce further assumptions:

Assumption 2. For each N ≥ 1, the following conditions hold:

(a) ui,t = σiεi,t, where εi,t follows a standard normal distribution, and is i.i.d. across (i, t)

and independent of Σu.

(b) si := αi/σi is independent of σi.

Based on the DGP described in Equation (1) and given the information set G, Assump-

tions 1 and 2(a) together ensure that the key summary statistics for αi are the volatility σi

and the sample average of the ex-factor returns, expressed as α̌i := r̄i − βi(γ + v̄) = αi + ūi.

In other words, E(αi|G) = E(αi|α̌i, σi). Consequently, this assumption simplifies the condi-

tional information set G in the posterior distribution of α to merely a two-dimensional vector

comprising these conditioning variables. To evaluate this conditional expectation, it becomes

necessary to assume a specific form of dependence between αi and σi.
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In light of this, we introduce Assumption 2(b), which allows us to further express

E(αi|α̌i, σi) = σiE(si|α̌i, σi) = σiE(si|α̌i/σi).23 This leads to s̃i := E(si|G) = E(si|ši), where

ši := α̌i/σi. Consequently, in terms of the scaled version of α, namely, s, the conditioning

information set is now a single scalar variable, which simplifies the estimation problem later.

Further, in light of Theorem 2, α̃, w̃, and S(G)2 can all be represented in relation to s̃:24

α̃ = Σ−1/2
u s̃, w̃ ∝MβΣ−1/2

u s̃, S(G)2 = s̃ᵀs̃. (17)

Finally, note that

ši = si + ε̄i ∼ N (si, T
−1), conditional on si.

This formulation casts the original posterior inference problem into the framework of the

classical Gaussian sequence model for recovering a high-dimensional mean vector, s, from

noisy observations š, which has been extensively studied in the statistics literature (see,

e.g., Robbins (1956), Efron (2011), and Efron (2019)). Although the assumption that εi

follows a Gaussian distribution may seem restrictive, this framework is sufficiently versatile

to accommodate a wide range of distributions for si.

Arbitrageurs face the challenge of identifying the true underlying signal, s, from an ob-

served noisy signal š. This task is complicated by what Efron (2011) described as selection

bias or “the winner’s curse”: A high observed signal, ši, could reflect a high si, or it could be

the result of “luck”, with an unusually large noise realization ε̄i. Consequently, arbitrageurs

must carefully adjust their investment strategies to mitigate this potential bias. The correc-

tion involves relying on s̃, which accounts for this bias. To see this, we present an explicit

formula for s̃:

Theorem 3. Suppose that rt follows (1) and Assumptions 1 and 2 hold. We introduce a

function ψ(a) = E (si|ši = a), with which we have α̃i = σis̃i, where s̃i = ψ(ši). Moreover, it

holds that

ψ(a) = a+
1

T

d

da
log p(a), (18)

where p(a) = E
(
φ1/T (a− si)

)
is the probability distribution function of ši.

25

The preceding discussion directly leads to the first assertion of the theorem. Equation (18)

is rooted in Tweedie’s formula (Robbins, 1956), which establishes a connection between the

posterior mean of s, given š = a, denoted ψ(a), and the posterior probability distribution of

23This equality relies on the result that conditional on α̂i/σi, αi/σi is independent of σi. We impose this
condition primarily for clarity of exposition and simplicity of Algorithm 1 below.

24Given that risk aversion does not impact the out-of-sample Sharpe ratio, we will use ∝ to substitute for
κ−1 in our subsequent discussions on the portfolio strategy.

25φx(a) is the distribution function for N (0, x).
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š. The formula’s second component, T−1d log p(a)/da, plays a crucial role in adjusting for the

selection bias in the observed signal, ši, which introduces several intriguing properties. An

example of these properties, as shown by Andrews et al. (1972), is that ψ(a) is a nondecreasing

function of a. This property ensures that the relative magnitude of various signals is preserved

post-correction. Moreover, under mild assumptions about the prior distribution of si, such

as being symmetric and unimodal, the posterior mean s̃ induces a shrinkage effect towards

the prior mean, which, in our context, is zero.

The posterior shrinkage on α, or equivalently on s, consequently induces a “shrinkage”

effect on the optimal Sharpe ratio achievable by arbitrageurs, as demonstrated by the in-

equality (13). Based on the results of Theorem 3, and under a technical condition concerning

the tail behavior of si, we can obtain a more explicit formula for S(G):

Corollary 2. Under the same assumptions outlined in Theorem 3, and with the additional

condition that E(s2
i1{|si|≥cN}) = o(N−1), we arrive at the conclusion that:

S(G) = SOPT + oP(1), with SOPT =

(
N

∫
ψ(a)2p(a)da

)1/2

.

This result enables us to compute SOPT in various examples. For instance, by utilizing

this result, we can compare SOPT with S? in Example 1. This comparison illuminates the fea-

sibility of attaining non-vanishing Sharpe ratios and how different DGP conditions influence

the attainability.

Corollary 3. Suppose that the same assumptions as in Corollary 2 hold. In addition, we

assume alpha follows (5) as in Example 1. Then we have S? = σ−1µ(ρN)1/2 +oP(1). Further,

assuming that σ−1µ(ρN)1/2 does not vanish, then it holds that SOPT ≤ (1 − ε)σ−1µ(ρN)1/2

for some ε > 0, if and only if

T 1/2µ/σ −
√
−2 log ρ . 1. (19)

Corollary 3 suggests that when T 1/2µ/σ is large enough that the constraint (19) is violated,

S? hP SOPT—that is, in the limit, learning does not play any role—arbitrageurs in this

scenario achieve the same Sharpe ratio as under perfect knowledge of alphas. Furthermore,

the rareness parameter ρ does not make much difference if T 1/2µ/σ gets sufficiently large.

That said, if ρ approaches to zero so fast that
√
−2 log ρ dominates T 1/2µ/σ—that is, alpha is

extremely rare and sufficiently weak—the learning problem becomes rather challenging and

the Sharpe ratio attainable by arbitrageurs, SOPT, is dominated, in the limit, by the infeasible

Sharpe ratio S?.
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To give a concrete example of Corollary 3, consider an alternative DGP assumption instead

of (6):26

µ h N−η and ρ > 0 is fixed. (20)

In this scenario, (S?)2 hP N
1−2η, which explodes unless η > 1/2. If we further assume that

N/T → ψ > 0, then the left-hand-side of condition (19) is of order N1/2−η ∨ 1, so that

(19) holds if and only if η ≥ 1/2. Therefore, η < 1/2 is not consistent with absence of

(feasible) near arbitrage because S? explodes and, since SOPT = S? by Corollary 3, SOPT

explodes, too. If η > 1/2, S? (and hence SOPT) vanishes, which does not seem like an

economically plausible case. If we think that asset demand distortions are sufficiently big so

that arbitrageur activity is required to prevent substantial mispricing, and that arbitrageurs

require some compensation for holding arbitrage positions, then a setting where true alphas

disappear asymptotically is not plausible. This suggests that under the DGP (20), the only

economically plausible case with absence of near-arbitrage, but not absence of mispricing, is

η = 1/2. That is, η can be thought as determined in equilibrium. Mispricing should be big

enough that arbitrageurs are active, earning a non-vanishing Sharpe ratio, and at the same

time small enough that near-arbitrage opportunities do not exist.

We now illustrate the behavior of SOPT numerically and verify the theoretical predictions

of Corollary 3 using the DGP specified in Example 1. Figure 1 reports the Sharpe ratio,

SOPT, of optimal feasible arbitrage portfolios for a range of µ/σ and ρ values in the case of

N = 1, 000 and T = 20 years. Recall that according to model (5), a fraction ρ of assets

have alphas with a Sharpe ratio µ/σ. That is, ρ characterizes the rareness of the alpha

signal, whereas µ/σ captures its strength. We intentionally choose a wide range of µ/σ (with

annualized Sharpe ratios from 0.11 to 10.95) and ρ (from 0.12% to 50%) to shed light on the

dependence of Sharpe ratios on signal weakness and rareness, although some of the resulting

portfolio Sharpe ratios (the top left corner of Figure 1) are unrealistically high. Note that

when µ/σ ×
√

12 hits 0.44, its corresponding t-statistic based on a 20-year sample exceeds

1.96, the typical t-hurdle for a standard student-t test.

The pattern of Sharpe ratios agrees with our intuition and theoretical predictions. For

any fixed ρ, as the alpha signal weakens (i.e., µ/σ decreases), the optimal Sharpe ratio drops.

The same is true if we decrease the signal count (i.e., ρ vanishes), for any fixed value of µ/σ.

The arbitrageur’s learning problem is easiest when signal is strong and count is large (top left

corner), and most challenging towards the right bottom corner, where the optimal Sharpe

ratios drop to near zero.

26It is easy to show that the setup (20) satisfies all assumptions of Corollary 2 for all fixed η > 0.
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Figure 1: Optimal Sharpe Ratios (SOPT) of Feasible Arbitrage Portfolios

Note: The figure reports optimal Sharpe ratios of feasible arbitrage portfolios in model (5), in which a

100× ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12.

The reported Sharpe ratios in Figure 1 are only a fraction of the corresponding (infeasible)

Sharpe ratios, S? =
√
αᵀ(Σu)−1α = µ/σ

√
ρN , as shown by Figure 2. The pattern we see from

Figure 2 agrees with theoretical predictions of Corollary 3. When the annualized Sharpe ratio

µ/σ ×
√

12 is larger than 2.74, regardless of the values of ρ, the signal-to-noise ratio of the

learning problem is sufficiently strong that the statistical limit to arbitrage does not matter

much, and hence SOPT/S? is close to 1. Nonetheless, this regime is irrelevant in practice,

since it is mostly associated with unrealistically high Sharpe ratios (see Figure 1). In contrast,

as µ/σ diminishes, the gap between S? and SOPT widens. In almost all empirically relevant

scenarios, S? is much larger than the feasible Sharpe ratio than arbitrageurs can actually

earn with an optimal strategy.

2.5 Constructing the Optimal Arbitrage Portfolio

In our previous discussion, Theorem 2 establishes that the optimal Sharpe ratio attainable

by any feasible strategy is capped by S(G), which, by Corollary 2, is approximately equal

to SOPT under additional conditions. Following this, Corollary 3 illustrates the dependence

of SOPT on the unknown parameters in the DGP of alpha, i.e., (5). In addition, (17) and

Theorem 3 characterize the strategy w̃ that achieves the optimal Sharpe ratio attainable by

any feasible strategy.

However, this characterization assumes access to the information set G, which includes
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Figure 2: Ratios between SOPT and S?

Note: The figure reports the ratios of optimal Sharpe ratios between feasible and infeasible arbitrage

portfolios. The simulation setting is based on model (5), in which a 100 × ρ% of assets have alphas that

correspond to an annualized Sharpe ratio µ/σ ×
√

12.

not only past returns, rt, but also potentially unknown variables, such as β, vt, and Σu.

Furthermore, it relies on knowledge of γ and the probability distribution function of š, i.e.,

p(a). As a result, while the Sharpe ratio bound remains a valid upper ceiling—since having

less information generally leads to lower achievable Sharpe ratios—the strategy w̃ is infeasible.

Its reliance on Σu and s̃, which in turn depend on ex-factor returns, r̄i − βi(γ + v̄), and

the probability distribution of š via (18), makes its implementation impractical. Therefore,

arbitrageurs encounter additional challenges in this context. They must conduct statistical

inference concerning unknown parameters and variables to shape their investment strategies.

Moreover, the devised optimal strategy must be flexible and adapt to the nuances of different

DGPs.

Despite these challenges, arbitrageurs can indeed construct a uniformly optimal strategy

that attains SOPT across a broad spectrum of DGPs, even without access to all information

in G and perfect knowledge of γ and the probability distribution of š. In fact, this strategy

relies only observable data, making it entirely feasible. Specifically, we formulate this strategy

within a framework where factors remain latent, but factor exposures are observable—a

scenario that aligns with our empirical analysis.

We describe this portfolio strategy as “all weather,” signifying its adaptability to all

considered DGP scenarios. Moreover, the fact that this strategy achieves SOPT implies that
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the feasible Sharpe ratio upper bound we derive is sharp. We outline the following algorithm

to construct this strategy:

Algorithm 1 (Optimal Arbitrage Portfolio via Empirical Bayes).

Inputs: rt, t ∈ T = {t− T + 1, . . . , t} and β.

S1. Construct cross-sectional regression estimates of alpha and idiosyncratic volatilities, for

each i = 1, 2, . . . , N :

α̂ = T−1
∑
s∈T

Mβrs, σ̂2
i = T−1

∑
s∈T

(
(Mβrs)i − α̂i

)2
, and ŝi := α̂i/σ̂i.

S2. Construct a nonparametric estimate of the marginal density of ŝ using Gaussian kernel

function φ1/T (x) and bandwidth kN h (logN)−1:

p̂(a) =
1

NkN

∑
i

φ1/T

( ŝi − a
kN

)
.

S3. Estimate s̃ by Tweedie’s formula (18) and isotonic regression:

ψ̆(a) =a+
1 + k2

N

T

d

da
log p̂(a).

ψ̂ = arg min
x∈RN

‖x− ψ̆‖2, s.t. xi ≤ xj if ŝi ≤ ŝj, for 1 ≤ i, j ≤ N, where ψ̆i := ψ̆(ŝi).

S4. Construct the arbitrage portfolio weights as ŵOPT ∝MβΣ̂
−1/2
u ψ̂.

Outputs: ŵOPT.

Step S1 of Algorithm 1 provides feasible estimates of α̂ and Σ̂u = Diag(σ̂2
i ), which in

turn leads to the sufficient statistic, ŝ. The motivation behind Steps S2 and S3 stems from

Tweedie’s formula (18); here, we employ a nonparametric empirical Bayes method for esti-

mating the posterior mean function using kernel density estimation, as suggested by Brown

and Greenshtein (2009). The incorporation of the factor (1 + k2
N) serves to adjust for finite

sample biases introduced by estimation errors in p̂(a). To enhance the nonparametric estima-

tor’s performance in finite samples, enforcing monotonicity on ψ(·) proves beneficial. For this

purpose, isotonic regression is utilized (see Robertson et al. (1988)), yielding a monotonic

piece-wise linear approximation of ψ(·). Step S4 constructs the optimal portfolio weights,

ŵOPT, following (17).

An essential step towards achieving optimality involves aggregating information from as-

sets with comparable ŝi, as done in Step S2. This strategy outperforms the alternatives, some
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of which directly use estimated ŝ as if these estimates are not susceptible to estimation errors

even when they are rather weak, or simply ignore the contribution of all weaker signals. Like

any machine learning method, the proposed approach requires a tuning parameter kN , which

can be selected in a validation sample.

The following theorem demonstrates the optimality of ŵOPT:

Theorem 4. Let P denote the collection of all data-generating processes under which the same

assumptions outlined in Corollary 2 hold. Moreover, we assume ‖β‖MAX .P 1, λmin(βᵀβ) &P

N , and that the distribution of si is symmetric. In addition, suppose that Nd . T . Nd′ for

fixed constants d > 1/2 and d′ < 1. We denote the Sharpe ratio achieved by ŵOPT as ŜOPT :=

E(rᵀt+1ŵ
OPT|Ft)/Var(rᵀt+1ŵ

OPT|Ft)1/2. Then it holds that ŵOPT achieves, asymptotically, the

upper bound SOPT, uniformly over all sequences of data-generating processes. That is, for

any ε > 0,

lim
N,T→∞

sup
P∈P

P
(∣∣ŜOPT − SOPT

∣∣ ≥ εSOPT + ε
)

= 0.

Theorem 4 imposes a mild assumption on λmin(βᵀβ), which requires that all factors are

pervasive.27 This condition is frequently utilized in the factor model literature and is partic-

ularly relevant here, given our assumption that the factors within our model are latent. A

significant difference between our context and the traditional empirical Bayes literature (e.g.,

Brown and Greenshtein (2009)) lies in our lack of direct access to the signals, ši’s. Instead,

we estimate these signals via cross-sectional regressions. This step results in our estimators,

ŝi’s, being inevitably polluted by estimation errors. The additional conditions imposed by

Theorem 4 ensure that such estimation errors become asymptotically negligible.

Theorem 4 concludes that in the context of a linear factor model, arbitrageurs can con-

struct this strategy, without any knowledge besides past returns and risk exposures (beta), to

achieve the maximal Sharpe ratio over all feasible trading strategies that have zero exposure

to factor risks. This Sharpe ratio precisely characterizes the limit of feasible arbitrages in

economic terms. A key reason for this result is that idiosyncratic variances represented by

Σu remain bounded both from below and above as N and T increase, unlike alphas. This

difference is empirically supported; alphas are expected to be small and rare, a result of

the competitive nature of arbitrage activities, in contrast to the consistent presence of id-

iosyncratic risks. Consequently, uncertainty about Σu becomes negligible in the context of

statistical arbitrage limitations. Furthermore, given the low-dimensional nature of vt and

γ and arbitrageurs’ knowledge knowledge of β, the problem of learning about vt and γ is

negligible as well.

27See, e.g., Assumption I.1 of Giglio and Xiu (2021). While our theoretical results may extend to certain
weak factor settings, this is not our emphasis here.
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The term εSOPT + ε accommodates both small and large values of SOPT. If SOPT . 1,

then ε dominates and the estimation error inside the probability is characterized by the

absolute difference between ŜOPT and SOPT. Otherwise, if SOPT → ∞, the estimation error

is described in percentage terms. This is necessary because we simultaneously consider a

large class of models where the Sharpe ratios may become extremely high or approach zero.

With Theorem 4, we establish the necessity for the no near-arbitrage condition given by

(16).

Corollary 4. Suppose the same assumptions as in Theorem 4 hold. The portfolio weights

ŵOPT yield a near-arbitrage strategy under any sequences of data-generating processes for

which condition (16) does not hold.

The ability of arbitrageurs to construct an optimal strategy that realizes SOPT carries

important economic implications. In an economy with statistical limits to arbitrage, the

equilibrium compensation that arbitrageurs demand for executing such a strategy equals

SOPT. If it were otherwise, arbitrageurs would continue trading until all profit opportuni-

ties were exhausted. Therefore, ŜOPT can be interpreted as an empirical estimate of this

equilibrium compensation, which we seek to pin down empirically.

2.6 Estimating Optimal Infeasible Sharpe Ratio

We are also interested in estimating the optimal infeasible Sharpe ratio, S?. This Sharpe

ratio can be estimated by an econometrician ex-post and in-sample, but it cannot be achieved

by any feasible portfolio. The existing literature on testing the APT often constructs test

statistics in the spirit of Gibbons et al. (1989), which are effectively based on S? (see, e.g.,

Pesaran and Yamagata (2017) and Fan et al. (2015)). While such tests are powerful and may

lead to detection of alphas, their relevance for arbitrageurs might be limited. The challenge

for arbitrageurs lies in translating statistical evidence of alpha discoveries into a feasible

portfolio strategy that realizes profits. Our proposed SOPT tackles this issue, providing an

economically more meaningful evaluation of the APT.

To provide a benchmark for ŜOPT, we propose an estimator for S? inspired by its sample

analog:

S̃? =
(
r̄ᵀMβΣ̂−1

u Mβ r̄
)1/2

. (21)

Unfortunately, this estimator has a non-vanishing asymptotic bias for certain DGPs we con-

sider, as we will show later. To fix this issue, we propose a new estimator that is uniformly

consistent:

Ŝ? =
(
r̄ᵀMβΣ̂−1

u Mβ r̄ −N/T
)1/2

. (22)
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The next proposition summarizes the asymptotic properties of both estimators.

Proposition 1. Suppose that the same assumptions outlined in Corollary 2 hold. Moreover,

we assume ‖β‖MAX .P 1 and λmin(βᵀβ) &P N . We also impose T . N and T−1N1/2 logN ≤
cN . Then we have ∣∣∣Ŝ? − S?∣∣∣/(1 + S?

)
= oP

(
T−1/2N1/4

√
logN

)
,∣∣∣S̃? − ((S?)2 +NT−1

)1/2∣∣∣/(1 + S?
)

= oP

(
T−1N1/2 logN

)
.

Similar to Theorem 4, the estimation error is relative when S? dominates 1.0 asymptoti-

cally, and in absolute terms if S? is dominated by 1.0.28 This accommodates a large class of

models, some of which have an exploding or a shrinking S?. While it is possible to estimate

S?, it is not possible to build a portfolio that realizes it, unless the signal-to-noise ratio is

sufficiently large such that S? = SOPT. Empirically, the difference between Ŝ? and ŜOPT

thereby informs us about the economic consequences of learning.

2.7 Alternative Strategies for Arbitrage Portfolios

Algorithm 1 introduces a nuanced approach that allows arbitrageurs to achieve feasible op-

timality. In practice, many empirical asset pricing researchers and practitioners often rely

on simpler strategies. Given the widespread adoption of these alternative approaches, it is

useful to assess how closely they approximate the optimal feasible strategy. In this section,

we examine their strengths and weaknesses in different DGP scenarios.

2.7.1 Cross-Sectional Regression

One of the most common strategies involves forming portfolios based directly on the cross-

sectional regression estimates of α, obtained in Step S1 of Algorithm 1. This method is

referred to as CSR, with its portfolio represented by ŵCSR:

ŵCSR ∝MβΣ̂−1
u α̂. (23)

This is effectively a sample analogue of the approximated infeasible strategy given by (14).

A specific instance of this strategy was discussed following Example 1.

We now exploit Example 1 to illustrate the pros and cons of the CSR strategy. Figure 3

illustrates the relationship between SCSR, the theoretical Sharpe ratio achieved by ŵCSR, and

SOPT across a spectrum of DGPs. According to Proposition B2 in the online appendix, SCSR

28Obviously, the threshold 1.0 can be replaced by any fixed constant.
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tends to be dominated by SOPT in scenarios when alpha signals are sparse (
√
ρTµ/σ is not

excessively large) and simultaneously strong (
√
Tµ/σ is not exceedingly small). This specific

regime of dominance is clearly marked with black numerals within the heatmap in Figure 3.

As the ratio µ/σ ×
√

12 edges closer to 1.0—either moving towards this vertical threshold

from the right hand side or descending from the upper left corner—the gap between SCSR

and SOPT enlarges increasingly.

The CSR approach takes all signal estimates directly, without differentiating the sig-

nificant ones from the insignificant ones. Consequently, even fake signals (pure noise) are

assigned non-zero weights. This hurts the portfolio’s performance. On the other hand, the

CSR strategy can achieve optimality when the strong signals are abundant (so that portfolio

weights allocated to noise are inconsequential) or when all signals are weak (so that they do

not differ too much from fake ones). The latter case is interesting, as it also suggests that

simply ignoring weaker signals is not optimal. That said, Figure 1 shows that the DGPs for

which the cross-sectional regression approach is strongly dominated by our optimal strategy

are associated with realistic Sharpe ratios.
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Figure 3: Ratios between SCSR and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the OLS based portfolio and the feasible

optimal arbitrage portfolio. The theoretical Sharpe ratio achieved by CSR is denoted as SCSR, given

explicitly by Proposition B2. The simulation setting is based on model (5), in which a 100× ρ% of assets

have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12.

The CSR approach is a simple benchmark as it does not rely on any advanced statistical

techniques to detect signals or distinguish their strength. The strategy we discuss next is
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more advanced, in that it controls false discoveries among selected strong signals using the

B-H procedure proposed by Benjamini and Hochberg (1995).

2.7.2 False Discovery Rate Control

To address the aforementioned selection bias in identifying profitable alpha signals, an alter-

native methodology conceptualizes the search for alpha as a multiple testing problem. In this

case, with N assets that are each potentially associated with a nonzero αi, we can establish

for each asset i a null hypothesis Hi
0 : αi = 0. Rejection of this null hypothesis leads to the

discovery of a non-zero alpha. Rather than focusing on the significance level of individual

tests, a more appropriate strategy involves controlling the FDR, an approach recommended

by Barras et al. (2010), Bajgrowicz and Scaillet (2012), and Harvey et al. (2016) in various

asset pricing contexts. Giglio et al. (2021) have proved the validity of the B-H procedure for

FDR control in a general factor model setting for alpha detection. Below we describe the

necessary steps to prepare alpha estimates for constructing an arbitrage portfolio.

Begin with a series of p-values, pi, where each is the result of a t-test on the cross-sectional

regression estimate of αi,
√
T ŝi, for i = 1, 2, . . . , N . These p-values assess the significance of

each αi’s deviation from zero. Arrange these p-values in ascending order, from the smallest

to the largest, resulting in a sorted sequence p(1) ≤ . . . ≤ p(N). Identify a critical index, k̂,

defined as the maximum i such that p(i) ≤ τi/N where τ is a predetermined significance level,

commonly set at 5%.

The threshold k̂ is selected such that, on average, at least a fraction (1− τ) of the alpha

estimates identified as significant (i.e., those with p-values smaller than p(k̂)) are truly non-

zero. This B-H criterion proves effective in guarding against false discoveries irrespective of

the overall proportion of non-zero alphas present in the DGP. The selected alpha estimates

are then used as inputs for constructing an arbitrage portfolio, as illustrated by the following

equation:

ŵBH(τ) ∝MβΣ̂−1
u α̂BH(τ), where α̂BH

i (τ) = α̂i1{pi≤p(k̂)}. (24)

This strategy introduces a hard-thresholding mechanism to the alpha estimates, effectively

nullifying the impact of alphas deemed insignificant.

Controlling the FDR on top of the CSR estimates is intuitively appealing, but doing so

incurs a potential loss of power that may hurt investment performance. Indeed, Proposition

B3 in the appendix shows, in the context of Example 1, arbitrageurs who adopt the B-H

based-trading strategy do not achieve the optimal portfolio for a large class of DGP sequences.

As shown by Proposition B3 and illustrated numerically by Figure 4, the discrepancy

between the optimal Sharpe ratio and that achieved through the B-H method is largely
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determined by signal strength. The B-H procedure nears optimality when the signal strength,

quantified by
√
Tµ/σ, is substantial—exceeding the threshold of

√
−2 log ρ. The instances

where the B-H strategy reaches optimality are depicted by the white values on Figure 4,

with the boundary of this optimal region approximated by the line where µ/σ
√

12 = 2.19.

This demonstrates that the B-H method excels in identifying strong signals, leading to near-

optimal portfolios when signals are strong. Conversely, in the presence of weak signals, the

B-H procedure, which amounts to hard-thresholding, tends to underperform compared to

CSR.

This point is further elaborated in Figure 1, which underscores that even if individual

alphas are weak, their aggregated effect on a portfolio’s Sharpe ratio can be non-trivial.

The B-H approach takes a notably conservative stance towards signal selection, especially in

contexts where signals are weak. This cautious approach ensures the reliability of selected

alphas by focusing on those that are truly significant. However, this method might not fully

capitalize on the potential cumulative impact of weaker signals. In contrast, our optimal

arbitrage portfolio leverages the full spectrum of alpha estimates, including false positives,

extending beyond the significant selections made through the B-H procedure.

At its core, this delineates a subtle yet critical divergence between two objectives: alpha

testing and portfolio construction. Alpha testing prioritizes the identification of statistically

significant alphas while controlling FDR, whereas portfolio construction concentrates on using

all available information to optimize performance. These objectives do not always align.

The CSR and the B-H approaches represent two typical strategies in practice. The former

trades all signals without distinguishing their strength, whereas the latter only trades the

stronger signals. Neither approach always achieves optimality.

2.7.3 Shrinkage Approaches

In the approximated infeasible strategy given by (14), the portfolio weights with respect to

ex-factor returns (Mβrt+1 ≈ α + ut) are Σ−1
u α. The CSR approach replaces the weights

Σ−1
u α with the sample analogue Σ̂−1

u α̂, and the B-H approach additionally imposes hard-

thresholding regularization on those weights.29 Multiplying the ex-factor return weights by

Mβ yields the portfolio weights in terms of raw returns (rt+1). Besides the hard-thresholding

of B-H, we can consider shrinkage-type regularization:

max
w
{wᵀα̂− 1

2
wᵀΣ̂uw − pλ(Σ̂1/2

u w)},

29Regularizing those weights amounts to incorporating priors onto the alpha estimates.
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Figure 4: Ratios between SBH and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the multiple testing based portfolio (via

B-H procedure) and the feasible optimal arbitrage portfolio. The theoretical Sharpe ratio achieved by B-H

is denoted as SBH, given explicitly by Proposition B3. The simulation setting is based on model (5), in

which a 100× ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12.

where pλ(x) = λ‖x‖1 or λ‖x‖2
2, for some λ > 0. Since Σ̂u is diagonal, this optimization

problem has a closed-form solution of weights with respect to ex-factor returns: w̆q,i(λ) =

σ̂−1
i ψq(ŝi, λ), for i = 1, 2, . . . , N , where q = 1 corresponds to the Lasso penalty and q = 2 the

ridge, and ψq(s, λ) is

ψ1(s, λ) = sgn(s)(|s| − λ)+, ψ2(s, λ) = (1 + 2λ)−1s.

This leads to the optimal portfolio weight on rt:
30

ŵq(λ) ∝Mβw̆q(λ), q = 1, 2.

Depending on the magnitude of λ, the Lasso approach replaces all smaller signals (i.e., ŝi) by

zero and shrinks the larger ones by λ in absolute terms. In other words, the Lasso approach

is the soft-thresholding alternative to the B-H method. In contrast, the ridge penalty shrinks

all signals proportionally. Since proportional scaling of portfolio weights does not affect the

Sharpe ratio, this means that ridge is equivalent to CSR! This “embedded” shrinkage effect

30An alternative strategy is to impose sparsity directly on the portfolio weights with respect to raw returns.
While this approach might be appealing from the transaction cost point of view, it does not associate with
an explicit prior on alpha, hence is more difficult to interpret.
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of CSR explains why it performs well in the case of small signals.

Proposition B4, along with Proposition B2 in the online appendix, offers explicit formulae

for the optimal feasible Sharpe ratios in the shrinkage case. The Sharpe ratio of ridge is

not affected by the tuning parameter, but Lasso’s performance is contingent on its tuning

parameter. However, even with the optimal choice of tuning parameter, it cannot achieve the

optimal feasible Sharpe ratio in all DGPs.

Figure 5 compares SLasso
λ with SOPT, where SLasso

λ denotes the theoretical Sharpe ratio

achieved by Lasso for a given tuning parameter choice λ. In practice, the tuning parameter

choice would require a cross-validation procedure. Here we adopt the theoretically optimal

tuning parameter that maximizes SLasso
λ in Figure 5. This strategy, unlike the B-H approach

where the tuning parameter τ is selected based on a clear statistical criterion, is not fully

feasible in practice, since the optimal tuning depends on the DGP, which is not fully known.

Hence, Figure 5 should be understood as showcasing the optimal performance of a class

of trading strategies indexed by the tuning parameter of Lasso, and only reports the best

performance within this class. This is a fair comparison to OPT, which represents the optimal

performance of all strategies, beyond the Lasso class, as the implementation of our algorithm

to achieve SOPT would also require choice of a tuning parameter. Although Proposition B4

suggests that Lasso is not uniformly optimal, it performs remarkably well, achieving the

optimal Sharpe ratio in almost all regimes. Intuitively, when signals are very strong, Lasso

behaves like a hard-thresholding selector, as shrinkage has minimal effect. Conversely, when

signals are week, ridge (and hence CSR) approach optimality, and Lasso can replicate their

performance by setting the tunning parameter close to zero.

3 Simulation Evidence

This section illustrates the applicability of our theory through simulations and assesses the

finite sample performance of our proposed portfolio strategies.

For simplicity and clarity, we simulate a one-factor model of returns as specified by (1).

We set the factor risk premium at 5% per annum with an annualized volatility of 25%. The

distribution of beta across assets is modeled as a normal distribution with a mean and variance

of one. Given our focus on arbitrage portfolios, the parameters of the factor component

(including the number of factors) are inconsequential, because factors are eliminated by Mβ

in the initial steps of constructing these trading strategies. In addition, we use the model

in (5) from Example 1 for the cross-sectional distribution of alpha. We maintain a constant

idiosyncratic volatility, denoted as σ for all assets, because the ratio α/σ determines signal

strength, and so there is no need to vary both α and σ in the cross section. While our Monte
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Figure 5: Ratios between SLasso
λ and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the Lasso based portfolio and the feasible

optimal arbitrage portfolio. The theoretical Sharpe ratio achieved by Lasso is treated as the maximum of

SLasso
λ over all λ, given explicitly by Proposition B4. The simulation setting is based on model (5), in which

a 100 × ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12. The tuning

parameter λ is selected to maximize SLasso
λ .

Carlo experiment is stylized, it effectively demonstrates the impact of estimation errors in

factors and volatilities and the finite sample performance of our theoretical predictions.

We compare the finite sample performance of our portfolio estimators across various

DGPs. We examine a broad spectrum of signal strength (µ/σ) and sparsity (ρ) values to cover

a range of potential empirical scenarios. For each set of parameters (µ/σ, ρ), we simulate the

corresponding DGP, construct portfolio weights, ŵA, where A represents OPT, CSR, BH, or

Lasso, and compute the corresponding theoretical Sharpe ratio: ŜA = ŵAᵀ
µ/
√
ŵAᵀΣ−1

u ŵA.

Our algorithm requires a tuning parameter. We choose it with a validation procedure that

divides the in-sample data into two parts: the first 80% is used for training, and the remaining

20% is reserved for validation. The optimal parameter maximizes the sample Sharpe ratio

in this validation subset. Once identified, this tuning parameter is then used with the entire

in-sample (training and validation) data to estimate portfolio weights. We use the same

validation approach to determine the tuning parameter for the Lasso method.31

In light of Theorem 4, the following performance measure is sensible:

31The specific grid we use for tuning our method consists of the set {0.25, 0.5, . . . , 4} × (logN)−1. For the
Lasso method, the parameter λ is selected from the set {2−10, 2−9, . . . , 2−1}. For our method, theoretical
guidance from Theorem 4 helps — we know a tuning parameter ' (logN)−1 would be optimal. For Lasso,
however, the optimal rate depends on the DGP, and we lack simple theoretical results to guide us.
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GapA(µ/σ, ρ) = Ê
(
|ŜA − SOPT|/(1 + SOPT)

)
,

where the explicit dependence of ŜA and SOPT on µ/σ and ρ is not specified, and Ê(·) denotes

the sample average computed over Monte Carlo simulations. This formula measures error as

relative percentages of SOPT when SOPT is significantly large (i.e., significantly greater than

1). Conversely, when SOPT is small (i.e., oP(1)), the error is gauged in absolute terms. This

approach ensures meaningful error measurment if SOPT diverges or diminishes depending on

the parameters involved.

To evaluate the asymptotic behavior of various estimators, we also report a measure of

the estimation error:

RMSEA(µ/σ, ρ) =

((
Ê(ŜA − SA)/(1 + SOPT)

)2

+ V̂ar
(
ŜA/(1 + SOPT)

))1/2

,

where V̂ar(·) denotes the sample variance across Monte Carlo repetitions.

Table 1 presents the maximum performance gap and estimation error across all values

of µ/σ and ρ. The results consistently show that OPT has the smallest gap to optimal

performance in comparison to CSR, BH, or Lasso. Lasso ranks second, while CSR and BH

exhibit significantly poorer performance. Notably, as T increases from 2 years to 20 years, the

maximum gap of OPT decreases from 0.381 to 0.152 for N = 1, 000, and from 0.276 to 0.127

for N = 3, 000. In contrast, as N increases, the performance of the latter three methods tends

to deteriorate. This trend can be attributed to an increasing theoretical performance gap,

quantified as |SA−SOPT|/(1+SOPT), that plays a dominating role. Indeed, the bottom panel

of the table illustrate that the estimation error asymptotically diminishes with increasing N .

Finally, Figure 6 reports the sample average of estimation error
∣∣Ŝ? − S?∣∣/(1 + S?

)
over

Monte Carlo simulations for each value of µ/σ and ρ. The results confirm the consistency

result in Proposition 1. The relative error remains small when S? is large or moderate

(significantly greater than 1). Conversely, near the bottom right corner of Figure 6, where S?

is essentially zero as shown by Figures 1 and 2, the estimation proves more challenging. In

this scenario, the error, becoming absolute (S? << 1), is notably larger due to a significant

upward bias that is difficult to mitigate in finite sample.

4 Empirical Analysis of US Equities

To demonstrate the empirical relevance of the statistical limit of arbitrage, we analyze US

monthly equity returns. Our analysis is divided into two parts: the first focuses on individual

equity returns, and the second utilizes portfolios as test assets. Employing portfolios allows us
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N = 1, 000 N = 3, 000
T = 2 T = 5 T = 10 T = 20 T = 2 T = 5 T = 10 T = 20

supµ/σ,ρ GapA(µ/σ, ρ)

OPT 0.381 0.243 0.171 0.152 0.276 0.228 0.143 0.127
CSR 0.622 0.586 0.532 0.477 0.462 0.604 0.610 0.562
BH 0.739 0.759 0.743 0.704 0.781 0.822 0.814 0.791
Lasso 0.396 0.259 0.176 0.154 0.298 0.265 0.159 0.172

supµ/σ,ρ RMSEA(µ/σ, ρ)

OPT 0.521 0.445 0.441 0.446 0.333 0.346 0.273 0.236
CSR 128 0.165 0.211 0.264 0.093 0.075 0.086 0.105
BH 0.492 0.436 0.440 0.442 0.359 0.347 0.263 0.248
Lasso 0.521 0.435 0.439 0.444 0.336 0.356 0.302 0.241

Table 1: Simulation Results

Note: The top panel displays the maximum Sharpe Ratio gap, defined as supµ/σ,ρ GapA(µ/σ, ρ), across all
values of µ/σ and ρ shown in Figure 1. Similarly, the lower panel details the maximum root-mean-squared
error, defined as supµ/σ,ρ RMSEA(µ/σ, ρ). Here, A represents the methods OPT, CSR, BH, or Lasso for
various combinations of N and T (measured in years). The OPT and Lasso methods employ a validation
procedure to determine the optimal tuning parameters. The BH method ensures control of the false discovery
rate at a 5% level.
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Figure 6: Comparison between Ŝ? and S?

Note: The figure reports the sample average of
∣∣Ŝ? − S?∣∣/(1 + S?

)
over Monte Carlo repetitions. The

simulation setting is based on model (5), in which a 100 × ρ% of assets have αs that correspond to an

annualized Sharpe ratio µ/σ ×
√

12. In this experiment, N = 1, 000 and T = 20 years.

to explore scenarios where alphas are linear functions of characteristics, aligning our approach

with the common empirical practice of predicting alphas based on such characteristics. We
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begin our discussion with a description of the datasets.

4.1 US Equity Data

Our monthly equity sample covers the period from January 1965 to December 2020. For

individual equities, we utilize a multi-factor model with observable factor loadings, closely

resembling the widely used MSCI Barra model. Specifically, we use 16 characteristics and 11

GICS sectors, drawing on both empirical insights from existing asset pricing literature and in-

dustry practice. The selected characteristics include market beta, size, operating profits/book

equity, book equity/market equity, asset growth, momentum, short-term reversal, industry

momentum, illiquidity, leverage, return seasonality, sales growth, accruals, dividend yield,

tangibility, and idiosyncratic risk, which are downloaded directly from the website openasset-

pricing.com (Stock-level Signal Datasets August 2023 Release).Details on the construction of

these characteristics can be found in Chen and Zimmermann (2020).

We download monthly return data for individual equities from CRSP and apply several

preprocessing steps. First, in the case of delistings, we use the delisting return as the final

return in the delisting month. Next, we merge the returns data with the aforementioned

characteristics database using permnos, which yields an average of 6,540 unique permnos per

month. We then apply standard filters (require share codes 10 and 11, and exchange codes

1, 2, and 3) to refine the dataset. This process selectively removes returns for certain months

from stocks that fail to meet these criteria during those periods. After applying these filters,

the average number of stocks remaining per month totals 4,756.

We address missing characteristics in our dataset with an approach that avoids forward-

looking bias. If GICS codes are missing, we use the most recent records available before the

data is missing, but we do not copy records backwards in time. Observations that do not

have a GICS code after this procedure are excluded, which predominantly affects records

before 1990. With GICS codes in place, we implement a two-step procedure to address other

missing characteristics. We fill each missing characteristic with the sector-wise median for

that characteristic each month. If a characteristic’s values are missing for an entire sector in

a given month, we use the cross-sectional median from all stocks for that month. After these

preprocessing steps, the average number of stocks per month is reduced to 4,095.

Characteristics-sorted portfolio returns are directly downloaded from the website openas-

setpricing.com under the “Portfolio Return Datasets” section. The dataset comprises 1,322

portfolios, spanning the years from 1965 to 2020. The portfolios are long-only and sorted

based on 212 characteristics, including 49 industry indicators. The number of portfolios per

characteristic varies depending on the specifications in the original papers that introduced

each characteristic. Additionally, some portfolios may contain missing values due to a lack of
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observations in certain categories. We use value-weighted portfolios to avoid high exposure

to illiquid small stocks.

4.2 Analysis of Individual Equity Returns

We consider a specific version of the model as defined in (2), setting αt as constant and βt

as observable. Each month, we regress next month’s returns on the 27 predictors, using all

stocks present in the current month’s cross-section, and including an intercept. We normalize

the 16 characteristics within each cross-section to mitigate the impact of extreme outliers.

This normalization transforms the characteristics to follow a normal distribution.32

Figure 7 plots the time series of the cross-sectional regression R2s over time. The R2 has

declined since the beginning of the sample until the 1990s. This coincides with an increase

in the number of stocks in US equity markets. The R2s are moderately low, with an average

of 8.07%, which suggests that a substantial portion of cross-sectional variation of individual

equity returns is idiosyncratic. Therefore, learning alphas from residuals of the factor model

is a difficult statistical task.
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Figure 7: Time-series of the Cross-sectional R2s

Note: The figure provides a time series of the cross-sectional R2s for individual equity returns, derived

from regressing next month’s returns against 27 firm-level characteristics in cross-sectional regressions.

32For each characteristic ci,t, the normalization applies the functional form Φ−1(rank(ci,t)), where Φ−1(·)
is the inverse of the cumulative distribution function of the standard normal distribution. Compared to
uniform normalization, this approach leads to slightly improved cross-sectional R2 values, thereby providing
a more accurate representation of realized returns. It is important to note, however, that the specific form of
normalization does not significantly impact subsequent results on arbitrage Sharpe ratios.
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4.2.1 Rare and Weak Alphas

We now study the statistical properties of individual equity alphas using the full sample data.

For each stock, we collect its regression residuals and take their average as an estimate for

its alpha. We require at least 60 observations. This ensures a sufficiently large sample size

for inference on alpha, although the empirical distribution of alphas’ t-statistics turns out be

insensitive to this requirement. Figure 8 provides histograms of the t-statistics and Sharpe

ratios for alphas of all 12,734 stocks in our sample that meet this criterion. Because these

stocks have different sample sizes, the histograms of the Sharpe ratios are not simply the

scaled version of the histogram of the t-statistics.

Only 7.58% of the t-statistics exceed 2.0 in magnitude, and more than 1.12% exceed 3.0.

This suggests that truly significant alphas are extremely rare. Moreover, the largest Sharpe

ratio among all individual stocks’ alphas is approximately 1.86. Notably, only 0.71% of the

alphas have a Sharpe ratio greater than 1.0. These summary statistics suggest that rare and

weak alpha is perhaps the most relevant scenario in practice.
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Figure 8: Histograms of the t-Statistics and Sharpe Ratios of Estimated Alphas

Note: The figure provides the histograms of the Student t-statistics (left) and Sharpe ratios (right) of

estimated alphas for all tickers in our sample with at least 60 months of data. The total number of tickers

available is 12,734.

Alphas are meaningless without reference to a specific factor model. While our analysis

includes only 27 firm-level characteristics, constructing a factor model with additional char-

acteristics would transform “alpha” into risk premia. Put it differently, extracting additional

“factors” from returns would result in even rarer and weaker alphas.
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4.2.2 Modest Feasible vs. Large Infeasible Sharpe Ratios

We now compare arbitrage portfolios based on various strategies discussed in Section 2.7.

At the end of each month, we construct optimal portfolio weights using these strategies.

These weights are estimated monthly with a 60-month rolling window, and the portfolios are

rebalanced accordingly.33 Both Lasso and OPT methods require a tuning parameter, which

is selected annually. For this purpose, the final year of the rolling window is set aside as the

validation sample to optimize the tuning parameter selection.

All these strategies yield modest Sharpe ratios. OPT reaches the top of the chart, yielding

0.82, followed by CSR at 0.70. The BH and Lasso approaches obtain Sharpe ratios of 0.65

and 0.62, respectively. To compare cumulative returns, we normalize all strategies to have

the same (ex-post) volatility. The resulting time-series of normalized cumulative returns are

shown in Figure 14. Notably, most returns are generated during the late 1980s to early 2000s.

After 2005, the cumulative returns of all strategies tend to plateau, indicating a decrease in

profitability of statistical arbitrage.

A detailed examination of these strategies offers further insights. The BH strategy is

highly conservative; over 51 years of out-of-sample trading (from January 1970 to December

2020), there are 284 months with zero holdings. The maximum number of stocks held in any

month is 32, with an average of only 6 stocks during months when holdings are non-zero. In

contrast, the CSR and OPT strategies hold all stocks that meet the sample criteria, averaging

2,833 stocks per month. The number of stocks held by the Lasso strategy is notably volatile,

ranging from none to almost all stocks in a given month, with an average of 722 stocks per

month. This volatility reflects the underlying weakness in their alphas, whose estimates are

prone to fluctuate with different samples.

In contrast to the simulation study where performance of strategies are evaluated over

a large class of DGPs, results presented in the empirical analysis here all originate from a

single DGP, i.e. the real market. Given the strong performance of CSR and the weaker

performance of BH, it is likely that the alphas in reality are rare and weak to the extent that

CSR is rather close to the optimal strategy. In this case, Lasso could only perform equally

well as CSR if we were able to select the optimal tuning, i.e., zero, (no selection or shrinkage),

which cross-validation cannot reliably achieve in all rolling windows. If we lived in a market

where its DGP makes CSR suboptimal in many rolling windows, Lasso would have a chance

to outperform, given its ability to achieve optimality within a larger class of DGPs.

We also estimate the perceived or infeasible Sharpe ratios using (21) within the same 60-

month rolling window. Our estimate, S̃?, averages 4.81 (with negative estimates truncated

33Empirical results based on 36- and 84-month windows are reported in Table A2 in the appendix for
robustness checks.
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Figure 9: Normalized Cumulative Returns of Arbitrage Portfolios

Note: This figure compares the cumulative returns of OPT (black solid), CSR (red dotted), BH (green

dashed), and Lasso (blue dot-dashed) strategies. We normalize all returns by their realized volatilities

calculated by the square root of the sum of the squared returns over the entire sample, only for comparison

purpose.

at 0), but it can occasionally exceed 16.0. These estimates are much higher than the feasible

Sharpe ratios (0.6 ∼ 0.8) we obtain for any of these strategies. This supports our theoretical

prediction that the impact of statistical learning alone can eliminate a substantial portion of

investment opportunities.

4.3 Analysis of Portfolio Returns

When portfolios are chosen as test assets, we opt for latent factor models due to the ab-

sence of natural choices of their factors or factor exposures. This approach aligns with the

return generating process presented in (1) but with unknown β and vt. Our factor model

estimation step follows Algorithm 4 outlined in Giglio et al. (2021). We estimate this model

using a 60-month rolling window, consistent with the main empirical analysis above.34 Using

the estimated factor loadings from each rolling window, we then conduct a cross-sectional

regression of the average returns over this window against these loadings, augmented with a

column of ones, to determine the risk premia of the latent factors, the zero-beta rate, and

the residuals, which serve as estimates for α’s. It is important to note that these loadings

34Results based on alternative 3-year and 7-year windows, which show similar outcomes, are reported in
Tables A1 and A2 in the appendix for reference.
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are identifiable only up to a rotation; hence, we report only those results that are invariant

to such rotations, for instance, R2 values and summary statistics for α’s.

4.3.1 Portfolio Alphas

These latent factor models demonstrate substantial in-sample cross-sectional explanatory

power for expected returns,35 accounting for an average of approximately 48% of the cross-

section variation in average returns across all rolling windows, with 10 factors.36 This results

in notably smaller Sharpe ratios for the alphas compared to the portfolios’ own Sharpe ratios.

Figure 10 contrasts the histograms of their respective Sharpe ratios. Notably, the distribution

of the alphas’ Sharpe ratios in darker gray exhibits thinner tails compared to those of the

portfolios’ Sharpe ratios in lighter gray.

We then apply the same algorithms to the portfolios’ alphas that we previously used

for individual stocks. The normalized cumulative returns are displayed in Figure 11. All

strategies earn substantially higher Sharpe ratios than those achieved with individual stocks.

Notably, the OPT strategy once again leads, yielding a Sharpe ratio of 1.71, closely followed

by CSR at 1.67. Meanwhile, the BH and Lasso strategies register Sharpe ratios of 1.49 and

1.18, respectively.

Next, we visualize the average portfolio weights over time using a heatmap in Figure 12.

The portfolios in this figure are sorted by the average weight they receive with the OPT

method, with the highest positive weights on top and the biggest negative weights at the

bottom. The figure shows that both OPT and CSR exhibit similar allocation patterns, with

non-zero weights assigned to many portfolios. However, OPT, which applies shrinkage to

portfolio alphas, tends to assign smaller weights than CSR. Due to the absence of shrinkage,

CSR has consistently higher weights than all other methods. As previously mentioned, CSR

achieves the same Sharpe ratio as ridge, because uniform shrinkage of all assets’ alphas does

not affect the Sharpe ratio. BH selects a narrower range of portfolios, most of which have zero

or near-zero weights, indicating a highly selective strategy. Lasso, although less conservative

than BH, also shows lighter colors on the heatmap, reflecting a significant level of selection

and shrinkage in the portfolio weights.

Among all characteristics, those assigned higher positive weights by these methods include

portfolios sorted by dividend seasonality identified by Hartzmark and Solomon (2013), price

as discussed in Blume and Husic (1973), intangible return from Daniel and Titman (2006),

gross profits to total assets analyzed by Novy-Marx (2013), and industry return of big firms

35This is different from the cross-section R2 with observable characteristics reported for individual equities,
which represents the (in-sample) explanatory power for realized returns.

36Results for models with varying numbers of factors are included in Tables A1 and A2 in the appendix
for comparison.
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Figure 10: Sharpe Ratios of Portfolio Returns and Alphas

Note: This figure compares the histograms of the Sharpe ratios of portfolios’ returns and their alphas.

1970-01 1977-04 1984-08 1991-11 1999-02 2006-05 2013-09 2020-12
0

2

4

6

8

10

12

C
u

m
u

la
ti
v
e

 R
e

tu
rn

CSR

LASSO

BH

OPT

Figure 11: Normalized Cumulative Returns of Arbitrage Portfolios

Note: This figure compares the cumulative returns of OPT (black solid), CSR (red dotted), BH (green

dashed), and Lasso (blue dot-dashed) strategies. We normalize all returns by their realized volatilities

calculated by the square root of the sum of the squared returns over the entire sample, only for comparison

purpose. The base assets for each strategy are all portfolios sorted by characteristics.

studied in Hou (2007). Conversely, the characteristics with the most negative weights in-
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Figure 12: Average Weights Assigned to Portfolios by Different Methods

Note: This figure displays a heatmap that shows the average portfolio weights over time for portfolios

sorted by characteristics, formed using BH, CSR, Lasso, and OPT methods.

clude portfolios sorted by spinoffs documented by Cusatis et al. (1993), past trading volume

from Brennan et al. (1998), initial public offerings from Ritter (1991), size from Dharan and

Ikenberry (1995), and exchange switch as in Banz (1981).

4.3.2 Accounting for Publication Effects

Many of the characteristics used in the construction of the portfolio return data set were

introduced to the academic literature later in the sample period. For this reason, the above

analysis may overstate achievable Sharpe ratios. If arbitrageurs were not aware of the pre-

dictive power of these characteristics in the early parts of the sample, these Sharpe ratios

were not truly achievable. Moreover, academics’ discovery of the predictive power of these

characteristics could potentially reflect ex-post selection bias, rendering the in-sample pre-

dictive power spurious. To address this issue, we revise our portfolio analysis to only include

characteristics from the year following their publication. Except for the 49 industry portfolios

(assumed) available since 1965, few portfolios were introduced in earlier years. As illustrated

in Figure 13, a significant number of these characteristics were introduced after 2000.

With this adjusted approach, the Sharpe ratios for the OPT and CSR are now substan-

tially lower at 0.61 and 0.66, respectively. These magnitudes align more closely with the

Sharpe ratios we obtained from individual stocks. The Lasso and BH strategies now achieve

only 0.45 and 0.35, respectively. Consistent with McLean and Pontiff (2016), this suggests

43



that some of the initial discoveries of signals may have been “lucky,” performing well in-

sample but then failing to replicate this success out-of-sample, or that competition among

arbitrageurs shrinks the alphas once the discoveries become public.
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Figure 13: Number of Portfolios Before and After Adjusting for Publication Years

Note: This figure plots two curves: one showing the total monthly count of characteristics-sorted portfolios

and the other displaying the count adjusted for only those portfolios whose characteristics have been

previously published.

Figure 15 shows infeasible Sharpe ratios estimated both before and after adjusting for

publication effects. Before this adjustment, the infeasible Sharpe ratio is consistently above

20, but after this adjustment, including characteristics only after their publication year, it is

much lower in the early part of the sample, starting around 5 in the early 1970s. As more

signals are discovered over time, the infeasible Sharpe ratio increases, eventually reaching

levels similar to those estimated without adjustment.

Despite these adjustments, a significant gap still exists between the theoretical infeasible

Sharpe ratios that range from 5 to 20 and the achievable Sharpe ratios, which are smaller than

0.7. This highlights the quantitative relevance of statistical limits of arbitrage in real-world

scenarios. The large reduction in Sharpe ratios suggests that statistical limits may play an

even more critical role than publication effects for characterizing the investment opportunities

that are actually feasible for arbitrageurs.
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Figure 14: Normalized Cumulative Returns of Arbitrage Portfolios

Note: This figure compares the cumulative returns of OPT (black solid), CSR (red dotted), BH (green

dashed), and Lasso (blue dot-dashed) strategies. We normalize all returns by their realized volatilities

calculated by the square root of the sum of the squared returns over the entire sample, only for comparison

purpose. The base assets only include portfolios sorted by characteristics that were previously published.
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Figure 15: Time Series Plots of Infeasible Sharpe Ratios

Note: This figure compares the Infeasible Sharpe ratios on the basis of portfolios before and after adjusting

for publication years.
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5 Conclusion

Taking stock, our paper provides a new theoretical framework for understanding the implica-

tions of statistical learning in asset pricing. Rather than endowing arbitrageurs with perfect

knowledge of DGP parameters, we expose them to the challenge of learning about alphas.

Arbitrageurs in reality arguably face a high-dimensional world, with many assets and many

alpha signals, which can make statistical learning difficult. These difficulties give rise to sta-

tistical limits of arbitrage, which manifest as a gap between the infeasible Sharpe ratio that

arbitrageurs could earn with perfect knowledge of alphas and the feasible Sharpe ratio that

arbitrageurs can attain with statistical learning.

While high-dimensional, the linear factor model environment that arbitrageurs face in our

analysis is still quite simple. The gap between feasible and infeasible Sharpe ratios would

further increase if arbitrageurs faced additional statistical challenges, e.g., model misspecifi-

cation, omitted factors, weak factors, or a large non-sparse idiosyncratic covariance matrix.

Our approach to characterizing the feasible Sharpe ratio is in important ways different

from other analyses of statistical learning in asset pricing. Many papers applying machine

learning methods in the construction of trading strategies have documented impressive Sharpe

ratios. Such strategies often rely on ad-hoc model design (e.g., a neural network with a

specific architecture) and tuning parameters selection. In this regard, the empirical analysis

can at best provide a “lower bound” on the performance of machine learning strategies. Our

paper provides a theoretical framework to understand the “upper bound” on the performance

of any statistical learning strategy in the specific context of arbitrage pricing theory. In

an equilibrium model, this upper bound in turn would be tied to the compensation that

arbitrageurs require in equilibrium, giving it an important economic interpretation.

In addition to the optimal strategy that attains the feasible Sharpe ratio, we also examine,

theoretically and empirically, the performance of other portfolio construction approaches that

rely multiple testing correction, variable selection, and shrinkage. While these approaches are

well motivated statistically, they do not perform as well as the optimal strategy in economic

terms, as measured by the Sharpe ratio. This finding highlights that good statistical prop-

erties, such as, for example, with regards to Type I and Type II errors or the false discovery

rate, do not necessarily translate into good economic performance. For instance, a statistical

procedure that guards against false discoveries may be overly conservative for investment

purposes. This divergence between statistical and economic objectives suggests some caution

when applying statistical tools imported from other areas—as in the current machine learning

literature in asset pricing—without proper consideration of the economic objectives.
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Appendix A Additional Empirical Results

In this appendix we expand our empirical analysis. We first estimate latent factor models

of portfolio returns, outlined in Section 4.3, under various alternative estimation windows

and numbers of factors. The estimation is conducted for both the original portfolios and the

ones adjusted for publication effects. We report the results in Table A1, which include the

cross-sectional in-sample explanatory power (R2) of expected returns of the factor models,

the infeasible Sharpe ratios (S?) corresponding to the portfolio alphas, and the distributions

of portfolio alphas’ t-statistics.

# of R2 S? |t-stat| |t-stat| R2 S? |t-stat| > |t-stat|
T Factors > 2 > 3 > 2 > 3

Original Portfolios Adjusted for Publication Effects

3 yrs 5 0.41 27.58 12.17 2.63 0.48 13.47 9.93 1.67
10 0.46 33.04 17.90 5.19 0.58 16.31 15.53 3.91
15 0.50 39.69 24.44 8.98 0.63 19.77 21.78 7.29

5 yrs 5 0.41 20.60 11.54 2.37 0.47 10.05 9.11 1.37
10 0.47 23.11 14.78 3.68 0.59 11.25 12.06 2.45
15 0.51 25.53 17.73 5.07 0.66 12.46 14.94 3.55

7 yrs 5 0.38 17.62 12.49 2.76 0.43 8.56 9.57 1.45
10 0.46 19.01 14.15 3.45 0.59 9.14 11.12 1.99
15 0.50 20.44 16.02 4.39 0.65 9.93 13.27 2.81

Table A1: Latent Factor Models of Portfolio Returns

Note: The left panel displays the results of estimating latent factor models with the original portfolio returns
as test assets. Across estimation windows and numbers of factors, the panel reports the cross-sectional R2,
the infeasible Sharpe ratios (S?), and the percentages of portfolio alphas with large t-statistics. Similarly, the
right panel details the result when the test assets are portfolio returns adjusted for publication effects.

The cross-sectional R2s by these models are similar across estimation windows, and mod-

erately increase with more factors included and publication effects adjusted for. Indeed, in

both cases, a larger proportion of cross-sectional variation of expected returns will be at-

tributed to risk premia. Considering that these R2s are in-sample ones, we choose to focus

on the 10-factor model in Section 4. Regarding the strength and rareness of alphas, both

the percentage of portfolio alphas with large t-statistics and the infeasible Sharpe ratio (S?)

increase with the number of factors. It suggests that, when we control for more factors, the

removal of factor risks is perhaps more prominent than the attribution of expected returns to

risk premia (thereby less to alphas), which ultimately allows alphas to stand out and to be

profited from more easily. On the other hand, with longer estimation window, we see both

the infeasible Sharpe ratio and the percentage of large t-statistics reduce. This result could
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originate from that many alphas are only moderately persistent and is behind our choice of

5-year window in Section 4. Lastly, since fewer alphas are left after the publication effects

are adjusted for, we observe increased cross-section R2, and both the infeasible Sharpe ratios

and the proportion of strong alpha signals shrink.

With the portfolio alphas obtained from the factor models, we show in Table A2 the

investment performance of the four different trading strategies: OPT method, CSR, BH, and

Lasso, measured by the average Sharpe ratios between January 1970 and December 2020.1

It complements the analysis of Section 4.3, which focuses on 5-year estimation window and

10-factor specification. As a robustness check for the analysis on individual equity returns

by Section 4.2, we also report in Table A2 the average Sharpe ratios generated by applying

the four trading strategies to individual equity alphas.

# of 5 10 15 5 10 15
T Factors

Individual Equities Original Portfolios Adjusted for Publication Effects

3 yrs OPT 0.71 1.23 1.33 1.25 0.54 0.59 0.54
CSR 0.65 1.22 1.30 1.27 0.52 0.57 0.56
BH 0.49 1.06 1.22 1.25 0.25 0.43 0.57
Lasso 0.56 0.87 1.08 1.09 0.45 0.56 0.47

5 yrs OPT 0.71 1.50 1.71 1.71 0.51 0.66 0.67
CSR 0.70 1.47 1.67 1.70 0.55 0.61 0.66
BH 0.65 1.52 1.49 1.67 0.25 0.35 0.48
Lasso 0.62 0.95 1.18 1.23 0.48 0.45 0.47

7 yrs OPT 0.81 1.71 1.95 2.01 0.72 0.73 0.79
CSR 0.90 1.64 1.93 1.98 0.77 0.74 0.76
BH 0.38 1.68 1.75 1.87 0.42 0.60 0.48
Lasso 0.83 1.10 1.32 1.54 0.66 0.60 0.74

Table A2: Sharpe Ratios of Arbitrage Portfiolios

Note: The table reports the average Sharpe ratios generated by arbitrage portfolios constructed using OPT
method, CSR, BH, and Lasso, with estimation windows set as 3, 5, and 7 years. The left panel displays the
results when we invest in individual equity alphas. The center panel provides the Sharpe ratios generated
when the investment universe is composed of portfolio alphas. The right panel displays the results when the
publication effects are adjusted for when using portfolio alphas. The center and right panels include outputs
under various numbers of factors in the latent factor model estimation.

Consistent with the evidence on the strength and rareness of alphas from Table A1, the

investment gains from trading portfolio alphas significantly decline after the adjustment for

publication effects. OPT method and CSR yield leading performance under most model

specifications and for both individual equity alphas and portfolio alphas. Lasso generates

1The Sharpe ratio is the average between January 1972 and December 2020 under the 7-year estimation
window, since our return data start from at January 1965.
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second-tier outputs, due to the challenge of locating the optimal tuning parameter based on

highly noisy return data. Notably, for portfolio alphas, we generally capture smaller Sharpe

ratios when we control for fewer factors, which echoes the suggestive evidence from Table A1

on the impact of factor risks.

Appendix B Additional Theoretical Results

Proposition B1. Suppose the same assumptions and information set G as in Theorem 2.

Moreover, we assume that (a) ‖β‖MAX .P 1 and λmin(βᵀβ) &P N ; (b) vt is i.i.d. across t,

E(vt) = 0, and its covariance matrix Σv satisfies 1 . λmin(Σv) ≤ λmax(Σv) . 1. Then it holds

that, for any strategy w that is G-measurable,

S(w) ≤ (S(G)2 + γᵀΣ−1
v γ)1/2 + oP(1 + S(G)).

Proposition B2. Suppose that rt follows (1), Assumption 1 holds, ui,t ∼ N (0, σ2), and α

following (5) as in Example 1. We also assume µ . N−d, Nd . T . N1−d, and N−d
′
. ρ .

N−d for some fixed d′ > d > 0. We denote the Sharpe ratio of the arbitrage portfolio given

by (23), as ŜCSR. Then it satisfies ŜCSR − SCSR = oP(1), where

SCSR =
N1/2ρµ2σ−2

(T−1 + ρµ2σ−2)1/2
.

Suppose further that SOPT does not vanish. It follows that SCSR = SOPT(1 + o(1)), if and

only if there exists cN → 0, such that
√
Tµ/σ ≤ cN or

√
ρTµ/σ ≥ c−1

N holds for all large N .

Proposition B3. Suppose the same assumptions as in Proposition B2 hold. For any given τ ,

the Sharpe ratio of the arbitrage portfolio with weights given by (24) denoted by ŜBH
τ , satisfies

ŜBH
τ = SBH

τ + oP(1 + SOPT), where2

SBH
τ =

N1/2E(αiši1{|ši|≥s∗})

σ
√

E(š2
i1{|ši|≥s∗})

=
N1/2ρµ

∫∞
−∞ x1{|x|≥s∗}φ1/T (x− µσ−1)dx

σ
√∫∞

−∞ x
21{|x|≥s∗}((1− ρ)φ1/T (x) + ρφ1/T (x− µσ−1))dx

,

ši = (αi + ūi)/σi, and s∗ is the smallest positive solution of the equation

2(1− τ)Φ(−T 1/2s) = τρΦ(T 1/2(µ/σ − s)).3 (B.1)

Suppose further that SOPT does not vanish. Then there exists, for any fixed ε > 0, some τ > 0

2If ŵBH = 0, i.e., no asset is selected, we set ŜBH = 0 by convention.
3Φ(·) is the standard normal cumulative distribution function.

4



such that, as N, T →∞, SBH
τ > (1− ε)SOPT, if and only if

√
Tµ/σ ≥

√
−2 log ρ(1 + o(1)).

Proposition B4. Suppose the same assumptions as in Proposition B2 hold. The Sharpe ratio

of the arbitrage portfolio with weights given by ŵq(λ), denoted as Ŝq,λ for q = 1, 2, satisfies

Ŝ1,λ − SLasso
λ = oP(1 + SOPT) and Ŝ2,λ − SCSR = oP(1 + SOPT), where

SLasso
λ =

N1/2E(αiψ1(ši, λ))

σ
√

E(ψ1(ši, λ)2)
=

N1/2ρµ
∫∞
−∞ sgn(x)(|x| − λ)+φ1/T (µσ−1 − x)dx

σ
√∫∞

−∞((|x| − λ)+)2((1− ρ)φ1/T (x) + ρφ1/T (µσ−1 − x))dx
,

(B.2)

and SCSR is defined in Proposition B2.

Furthermore, if SOPT does not vanish, then SLasso
λ = SOPT(1 + o(1)), under some de-

terministic non-negative sequence of λ, if and only if, for some cN → 0, either
√
Tµ/σ ≤

cN or
√
Tµ/σ −

√
−2 log ρ ≥ c−1

N holds for all large N .

Moreover, when
√
Tµ/σ ≤ cN , SLasso

λ approaches SOPT if and only if λ satisfies T 1/2λ→ 0.

When
√
Tµ/σ−

√
−2 log ρ ≥ c−1

N , SLasso
λ approaches SOPT if and only if λ satisfies

√
T (µ/σ−

λ)→∞ and φ(
√
Tλ)

ρ(1+Tλ2)T (µ/σ−λ)2
→ 0.

Appendix C Mathematical Proofs

C.1 Proof of Theorem 1

Since β is G-measurable, we can write, for all w satisfying wᵀβ = 0,

wᵀrt+1 = wᵀ(α + ut+1).

Because E(ut+1|Ft) = 0 according to the specification of (1) and G is a subset of Ft, we

have E(ut+1|G) = 0. Moreover, since α is F -measurable, it holds that E(ut+1α
ᵀ|G) =

E(E(ut+1α
ᵀ|F)|G) = 0, i.e., ut+1 and α are G-conditionally uncorrelated. Therefore,

Var(α + ut+1|G) = Var(α|G) + Var(ut+1|G). On the other hand, since E(ut+1|G) = 0, we

have Var(ut+1|G) = E(ut+1u
ᵀ
t+1|G) = E(E(ut+1u

ᵀ
t+1|F)|G) = E(Σu|G). Finally, we obtain

Var(α + ut+1|G) = Σ̃u. Then, it holds that, for all w ∈ G satisfying wᵀβ = 0,

U(w) = E(wᵀrt+1|G)− κ

2
Var(rt+1|G) = wᵀα̃− κ

2
wᵀΣ̃uw. (C.3)

We first find w that maximize wᵀα̃ − κ
2
wᵀΣ̃uw only under the constraint wᵀβ = 0. Next,

we will verify that the solution is unique and is indeed G-measurable, which would prove the

theorem. The first step is equivalent with maximizing
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wᵀα̃− κ

2
wᵀΣ̃uw + λwᵀβ,

where λ is the Lagrange multiplier such that the solution w satisfies wᵀβ = 0. As the objective

function is clearly strictly concave, we only need to look at the first-order condition, which

reads

w =
1

κ
Σ̃−1
u (α̃ + λβ).

We can pin down λ by requiring βᵀΣ̃−1
u (α̃ + λβ) = 0, which gives λ = (βᵀΣ̃−1

u β)−1βᵀΣ̃−1
u α̃

and thereby

w =
1

κ
Σ̃−1
u (IN + β(βᵀΣ̃−1

u β)−1βᵀΣ̃−1
u )α̃ =

1

κ
Σ̃−1/2
u M

Σ̃
−1/2
u β

Σ̃−1/2
u α̃.

C.2 Proof of Theorem 2

To simplify the notation, we omit the dependence of β, Σ on N , and w on N and T . All

limits are taken as N → ∞. The derivation applies to either fixed T or T → ∞ together

with N .

We first note that, given (1), conditioning on G is equivalent to conditioning on the

information set generated by

{(αi + ui,s, βi, vs, σi) : t− T + 1 ≤ s ≤ t, i ≤ N}.

According to Assumption 1, conditionally on Σu, {(αi, αi + ui,s) : t − T + 1 ≤ s ≤ t}
is independent of {(αj + uj,s, βj′ , vs) : t − T + 1 ≤ s ≤ t, j, j′ ≤ N, j 6= i}. Therefore,

the G-conditional distribution of αi is the same as the distribution of αi conditional on

{αi + ui,s : t − T + 1 ≤ s ≤ t} and Σu. Because σj is independent with (αi, ui) for j 6= i,

the G-conditional distribution of αi is the same as the the Gi-conditional distribution of αi,

where Gi is the information set generated by {(αi + ui,s, σi) : t − T + 1 ≤ s ≤ t}. Since Gi
is independent across i by Assumption 1, we conclude that, conditionally on G, αi remains

independent across i.

Now define E = E(wᵀrt+1|Ft)− E(wᵀrt+1|G). By the definition of S(ŵ), we have

S(ŵ) = E(wᵀrt+1|G)/Var(wᵀrt+1|Ft)1/2 + E/Var(wᵀrt+1|Ft)1/2. (C.4)

Since w is G-measurable, it follows that E = wᵀ(α − E(α|G)) and that E(E2|G) =

wᵀVar(α|G)w. Then, using Chebyshev’s inequality, we have, for all positive fixed ε,

P(|E|/‖w‖ ≥ ε) ≤ E(E2/‖w‖2)/ε2 = E(wᵀVar(α|G)w/‖w‖2)/ε2. (C.5)
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Because conditionally on G, αi is independent across i, we have Var(α|G)i,j = δi,jVar(αi|G).

It thereby follows that

E(wᵀVar(α|G)w/‖w‖2) ≤ E(max
i≤N

Var(αi|G)) ≤ E(max
i≤N

α2
i ) = o(1), (C.6)

where the last step comes from condition (a) of Assumption 1. Combining (C.5) and (C.6),

and using Var(wᵀrt+1|Ft) = wᵀΣw ≥ λmin(Σu)‖w‖2 &P ‖w‖2, we obtain

|E|/Var(wᵀrt+1|Ft)1/2 .P |E|/‖w‖ = oP(1). (C.7)

(C.7) and (C.4) lead to

S(w) = wᵀE(rt+1|G)(wᵀΣw)−1/2 + oP(1). (C.8)

Furthermore, if wᵀβ = 0, then it follows that wᵀrt = wᵀ(α + ut) and wᵀΣw = wᵀΣuw.

Equation (C.8) then becomes

S(w) = wᵀα̃(wᵀΣuw)−1/2 + oP(1). (C.9)

Applying Cauchy-Schwarz inequality, we obtain

|wᵀα̃|2(wᵀΣuw)−1 ≤ α̃ᵀΣ−1
u α̃ = S(G)2,

which, combined with (C.9), proves the inequality in (11).

We move on to the remaining results: the equality in (11), (12), and the optimal utility.

They all hinge on the property of w̃. As a first step, we introduce short-hand notation

w̌ :=
1

κ
Σ−1/2
u P

Σ
−1/2
u β

Σ−1/2
u α̃, w̌′ :=

1

κ
PβΣ−1

u α̃.

Given the specification of G, we have Σ̃u = Σu and thereby

w̃ =
1

κ
Σ−1
u α̃− w̌, w̃ − 1

κ
MβΣ−1

u α̃ = w̌′ − w̌. (C.10)

To establish the equality in (11), (12), and the optimal utility, we now prove that both ‖w̌‖
and ‖w̌′‖ are oP(1), which will then quickly leads to those results.

To this end, we start by analyzing E(α̃|β,Σu) and Cov(α̃|Σu, β). We note that

E(α̃|β,Σu) = E(α|β,Σu) = E(α|Σu) = 0. (C.11)
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The first equality comes from that α̃ := E(α|G) and that β and Σu are G-measurable. The

second equality comes from Assumption 1 (b). The last equality comes from Assumption 1 (a).

Moreover, from the analysis above (C.4), α̃i is a function of {(αi+ui,s, σi) : t−T+1 ≤ s ≤ t}.
According to Assumption 1 (b), {(αi + ui,s, σi) : t− T + 1 ≤ s ≤ t} and β are, conditionally

on Σu, independent. Therefore,

Cov(α̃i, α̃j|Σu, β) = Cov(α̃i, α̃j|Σu) = δi,jVar(α̃i|Σu). (C.12)

The second equality comes from Cov(α̃i, α̃j|Σu) = 0 for i 6= j, which is because (αi, ui) is

i.i.d. across i per Assumption 1 (a). Therefore, it holds that

Cov(α̃|Σu, β) ≤ E(‖α‖2
MAX|Σu)IN (C.13)

It hence holds that

E(‖w̌‖2|Σu, β) = Tr(Σ−1/2
u P

Σ
−1/2
u β

Σ−1/2
u Cov(α̃|Σu, β)Σ−1/2

u P
Σ
−1/2
u β

Σ−1/2
u )

≤ E(‖α‖2
MAX|Σu)Tr(Σ−1/2

u P
Σ
−1/2
u β

Σ−1
u P

Σ
−1/2
u β

Σ−1/2
u ). (C.14)

The equality comes from (C.11). The inequality comes from (C.12), (C.13), and the well-

known result on Loewner order (see, e.g., Theorem 7.7.2 at Horn and Johnson (2012)). On

the other hand, it holds that

Tr(Σ−1/2
u P

Σ
−1/2
u β

Σ−1
u P

Σ
−1/2
u β

Σ−1/2
u ) .P Tr(Σ−1/2

u P
Σ
−1/2
u β

P
Σ
−1/2
u β

Σ−1/2
u )

= Tr(P
Σ
−1/2
u β

Σ−1
u P

Σ
−1/2
u β

) .P Tr(P
Σ
−1/2
u β

) = rank(β) = K. (C.15)

Both inequalities come from Σu &P IN by Assumption 1 (a). Substituting (C.15) into (C.14),

we obtain

E(‖w̌‖2|Σu, β) .P E(‖α‖2
MAX|Σu) = oP(1), (C.16)

where the last bound comes from Assumption 1 (a). Symmetrically, we have

E(‖w̌′‖2|Σu, β) = Tr(PβΣ−1
u Cov(α̃|Σu, β)Σ−1

u Pβ) ≤ E(‖α‖2
MAX|Σu)Tr(PβΣ−2

u Pβ)

.P E(‖α‖2
MAX|Σu)Tr(Pβ) = E(‖α‖2

MAX|Σu)K = oP(1). (C.17)

Applying Chebyshev’s inequality to (C.16) and (C.17), we obtain

‖w̌‖+ ‖w̌′‖ = oP(1). (C.18)
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Combining (C.18) with the second part of (C.10), we establish (12) using the triangle in-

equality.

To prove the equality in (11), we note that, using the first part of (C.10),

w̃ᵀα̃ =
1

κ
α̃ᵀΣ−1

u α̃− w̌ᵀα̃, w̃ᵀΣuw̃ =
1

κ2
α̃ᵀΣ−1

u α̃ + w̌ᵀΣuw̌ −
2

κ
w̌ᵀα̃. (C.19)

On the other hand, applying that Σu .P IN by Assumption 1 (a) and (C.18), we obtain

w̌ᵀΣuw̌ .P ‖w̌‖ = oP(1), |w̌ᵀα̃| ≤
√
w̌ᵀΣuw̌S(G) .P ‖w̌‖S(G) = oP(S(G)). (C.20)

Substituting (C.19) into (C.20), we establish

w̃ᵀα̃ =
1

κ
S(G)2 + oP(S(G)), w̃ᵀΣuw̃ =

1

κ2
S(G)2 + oP(1 + S(G)). (C.21)

Suppose S(G) &P 1. Then, if w = w̃, the equality in (11) indeed follows from (C.21).

Suppose S(G) = oP(1). Then S(w̃) ≤ oP(1) and −S(w̃) = S(−w̃) ≤ oP(1) according to (the

inequality part of) (11) as w̃ is both G-measurable and factor-neutral. In other words, we

have S(w̃) = oP(1) and that the equality in (11) also holds. Applying the classic subsequence

argument, we establish that the equality in (11) holds if w = w̃.

Finally, substituting (C.21) into (C.3), we obtain (recall Σ̃u = Σu here)

U(w̃) = w̃ᵀα̃− κ

2
w̃ᵀΣuw̃ =

1

2κ
S(G)2 + oP(1 + S(G)).

Taking square root, we establish the optimal utility result.

C.3 Proof of Theorem 3, Corollary 2, and Corollary 3

Proof of Theorem 3. We have established in the beginning of the proof of Theorem 2 that

the G-conditional distribution of αi is the same as the Gi-conditional distribution of αi, where

Gi is the information set generated by {(αi + ui,s) : t − T + 1 ≤ s ≤ t} and σi. Note

that ui,s is centered normal, we have that the conditional probability density of {r∗i,s :=

αi + ui,s, t− T + 1 ≤ s ≤ t} given si and σi, denoted by p(r∗i |si, σi), is

p(r∗i |si, σi) =
∏

t−T+1≤s≤t

σ−1
i φ(σ−1

i r∗i,s − si) = φ(T 1/2(ši − si))f(r∗i ). (C.22)

Here f(r∗i ) is a function of r∗i and σi that does not depend on si. Hence, applying Bayes’

theorem, we have
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α̃i = E(αi|Gi) = σiE(si|Gi) = σi

∫
xp(si = x|r∗i , σi)dx

= σi

∫
x

p(r∗i |si = x, σi)p(si = x|σi)∫
p(r∗i |si = x′, σi)p(si = x′|σi)dx′

dx

= σi

∫
x

p(r∗i |si = x, σi)ps(x)∫
p(r∗i |si = x′, σi)ps(x′)dx′

dx

= σi

∫
x

φ(T 1/2(ši − x))ps(x)∫
φ(T 1/2(ši − x′))ps(x′)dx′

dx = σiE(si|ši),

The second line comes from the Bayes’ theorem. In the third line, ps(·) is the marginal density

of si that is invariant across i, and we use the fact that si and σi are independent, given by

condition (a) of Assumption 2. The first equality in the last line comes from (C.22). The

second equality in the last line comes from the Bayes’ theorem and that φ(T 1/2(ši−x)) is, up

to a constant, the density of ši conditional on si = x. We hence establish the first statement

in the theorem.

Next, we note that ψ(a) = E(si|ši = a) and, conditional on si = a, ši h N (a, T−1). The

marginal density of ši is then indeed E(φ1/T (a− si)). Therefore, (18) directly comes from the

Tweedie’s formula, see, e.g., Robbins (1956) . The proof ends.

Proof of Corollary 2. Apparently, ši = si + σ−1
i ūi is i.i.d. across i. By direction calculation

and the definition of SOPT in the statement of the corollary, we have

E(α̃ᵀΣ−1
u α̃) =

∑
i

E(E(si|G)2) = N

∫
ψ(a)2p(a)da = (SOPT)2. (C.23)

Now we study S(G) = α̃ᵀΣ−1
u α̃ =

∑
i E(si|G)2. Using the fact that a2−b2 = (a−b)2+2b(a−b),

we have

E(|E(si1{|si|≤cN}|G)2 − E(si|G)2|)

≤ E(E(si1{|si|>cN}|G)2) + 2E(|E(si|G)E(si1{|si|>cN}|G)|)

≤ E(s2
i1{|si|>cN}) + 2

√
E(E(si|G)2)E(E(si1{|si|>cN}|G)2)

≤ E(s2
i1{|si|>cN}) + 2

√
E(E(si|G)2)E(s2

i1{|si|>cN})

≤ cNN
−1 +

√
E(E(si|G)2)cNN−1, (C.24)

where the last step holds by the assumption E(s2
i1{|si|≥cN}) = o(N−1). Then we have

E

(
|
∑
i

E(si1{|si|≤cN}|G)2 −
∑
i

E(si|G)2|

)
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≤
∑
i

E(|E(si1{|si|≤cN}|G)2 − E(si|G)2|)

≤ cN +

√∑
i

E(E(si|G)2)cN = o(1 + SOPT), (C.25)

where the second inequality is a direct result of (C.24), and the last estimate is given by

(C.23). From (C.25) and (C.23), it follows, respectively, using Markov’s inequality and tri-

angle inequality that∑
i

E(si1{|si|≤cN}|G)2 =
∑
i

E(si|G)2 + oP(1 + SOPT), (C.26)

E

(∑
i

E(si1{|si|≤cN}|G)2

)
= (SOPT)2 + o(1 + SOPT). (C.27)

Further, we have

Var

(∑
i

E(si1{|si|≤cN}|G)2

)
=

∑
i

Var(E(si1{|si|≤cN}|G)2)

≤ c2
N

∑
i

E(E(si1{|si|≤cN}|G)2) = o(1 + (SOPT)2). (C.28)

For the first line, we use that E(si1{|si|≤cN}|G) is independent across i. The second line is

obvious as |si|1{|si|≤cN} ≤ cN . The last line comes from (C.27). Combining (C.27) and (C.28),

we obtain ∑
i

E(si1{|si|≤cN}|G)2 = (SOPT)2 + o(1 + SOPT) + oP(1 + (SOPT)2)1/2.

Along with (C.26), we obtain∑
i

E(si|G)2 = (SOPT)2 + oP(1 + SOPT).

In light of the definition of S(G), and the fact that

((SOPT)2 + oP(1 + SOPT))1/2 = SOPT + oP(1),

we conclude the proof.

Proof of Corollary 3. Because of the tail condition E(s2
i1{|si|≥cN}) ≤ cNN

−1 for some sequence

cN → 0 and that σi is constant across i, we have
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E

∣∣∣∣αᵀα−
∑
i

α2
i1{|αi|<cN}

∣∣∣∣ = E

∣∣∣∣∑
i

α2
i1{|αi|≥cN}

∣∣∣∣ = o(1),

which, by Markov’s inequality and triangle inequality, respectively, leads to

αᵀα =
∑
i

α2
i1{|αi|<cN} + oP(1), E

(∑
i

α2
i1{|αi|<cN}

)
= µ2ρN. (C.29)

On the other hand, it holds that

Var

(∑
i

α2
i1{|αi|<cN}

)
≤
∑
i

E(α4
i1{|αi|<cN}) ≤ c2

N

∑
i

E(α2
i ) = c2

Nµ
2ρN. (C.30)

Combining (C.29) and (C.30), we obtain

αᵀα = µ2ρN + oP(1 + µ
√
ρN).

As a result, it holds that

S? = σ−1
√
αᵀα = σ−1µ(ρN)1/2 + oP(1). (C.31)

Further, in light of the explicit distribution of α in Example 1, we have

ψ(a) =
µρφ(a− T 1/2µ/σ)− µρφ(a+ T 1/2µ/σ)

(2− 2ρ)φ(a) + ρφ(a− T 1/2µ/σ) + ρφ(a+ T 1/2µ/σ)
, (C.32)(

SOPT
)2

=
µρN

2σ2

∫
ψ(a)(φ(a− T 1/2µ/σ)− φ(a+ T 1/2µ/σ))da. (C.33)

Suppose that T 1/2µσ−1 −
√
−2 log ρ ≤ C <∞. Then we have

sup
a≥C

ρφ(a)

φ(a− T 1/2µ/σ)
= exp

(
log ρ+ T 1/2µσ−1

(
1

2
T 1/2µσ−1 − C

))
≤ exp

(
log ρ+

1

2

(√
−2 log ρ+ C

)(√
−2 log ρ− C

))
≤ 1.(C.34)

On the other hand, in light of (C.32) and (C.33), we have

(
SOPT

)2
=

µρN

σ2

∫
ψ(a)φ(a− T 1/2µ/σ)da

≤ µρN

σ2

∫
µρφ(a− T 1/2µ/σ)

(2− 2ρ)φ(a) + ρφ(a− T 1/2µ/σ)
φ(a− T 1/2µ/σ)da

=
µ2ρN

σ2

∫
ρφ(a)

(2− 2ρ)φ(a− T 1/2µ/σ) + ρφ(a)
φ(a)da.
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We hence obtain from (C.34) that, for N sufficiently large,

(
SOPT

)2 ≤ µ2ρN

σ2

(∫
a≥C

1

3− 2ρ
φ(a)da+

∫
a≤C

φ(a)da

)
≤ µ2ρN

σ2

(
1− 1

2
Φ(−C)

)
.

This proves the “if” part, given (C.31) and that µ2ρN/σ2 does not vanish. Now suppose

T 1/2µσ−1 −
√
−2 log ρ→∞. Then, for all fixed x > 0, we have, for sufficiently large N ,

sup
a:|a|≤x

φ(a+ T 1/2µ/σ)

ρφ(a)
= exp

(
− log ρ− T 1/2µσ−1

(
1

2
T 1/2µσ−1 − x

))
≤ exp

(
− log ρ− 1

2

(√
−2 log ρ+ c−1

N

)(√
−2 log ρ+ c−1

N

))
≤ exp

(
− c−2

N /2
)
→ 0, (C.35)

sup
a:|a|≤x

φ(a+ 2T 1/2µ/σ)

φ(a)
= exp

(
− 2T 1/2µσ−1(T 1/2µσ−1 − x)

)
→ 0. (C.36)

Given (C.32), it holds that

ψ
(
a+ T 1/2µ/σ

)
= µ

1− φ(a+2T 1/2µ/σ)
φ(a)

1 + (2−2ρ)φ(a+T 1/2µ/σ)
ρφ(a)

+ φ(a+2T 1/2µ/σ)
φ(a)

.

Substituting (C.36) into the numerator, and (C.35) and (C.36) into the denominator, we

obtain that, for all fixed x > 0,

sup
a:|a|≤x

∣∣∣µ−1ψ
(
a+ T 1/2µ/σ

)
− 1
∣∣∣→ 0. (C.37)

Since the integrand of (C.33) is always positive and even in a, it holds that, for all fixed

x > 0,

(
SOPT

)2 ≥ µρN

σ2

∫
|a−T 1/2µ/σ|≤x

ψ(a)(φ(a− T 1/2µ/σ)− φ(a+ T 1/2µ/σ))da

≥ µρN

σ2

∫
|a−T 1/2µ/σ|≤x

ψ(a)φ(a− T 1/2µ/σ)(1− cN)da

≥ µρN

σ2

∫
|a−T 1/2µ/σ|≤x

µφ(a− T 1/2µ/σ)(1− cN)da

≥ µ2ρN

σ2
(1− cN − 2Φ(−x)).

Here the second inequality comes from (C.36), the third inequality is a result of (C.37), and

the last inequality is obvious. Because this result holds for all fixed x > 0, the “only if” part
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is proved.

C.4 Proof of Theorem 4

Given the length of the proof, a briefly explanation is warranted to clarify the key ideas and

structure.

The whole proof is organized into 5 steps. Steps 1 - 4 demonstrate that the distance

between the conditional expectation vector ψ := Σ
−1/2
u E(α|G) = (ψ(š1), . . . , ψ(šN))ᵀ, and the

estimate ψ̆ := (ψ̆(ŝ1), . . . , ψ̆(ŝN))ᵀ, measured by L2 norm, is small compared to SOPT. Based

on the result, step 5 shows the gap between monotonicity-preserving estimate ψ̂ and ψ in

L2 norm is also small compared to SOPT. This leads to that the Sharpe ratio generated by

ŵOPT = MβΣ̂
−1/2
u ψ̂ converges to SOPT, proved in the last step.

We note that, because of the rare and weak nature of alphas, E(αi|G) converges to zero in

probability for each individual i, despite their large collective contribution to Sharpe ratio.

Therefore, we need instead the L2 norm of errors involved in ψ̂ to converge to zero.

Step 1. Throughout the proof, we use the following notation, introduced in the main text

of the paper,

ši = T−1
∑
s∈T

(si+ εi,s), ŝi = α̂i/σ̂i, p(a) = E(φ1/T (a− si)), ψ(a) = E(si|ši = a). (C.38)

As in that statement, p(a) is the density of ši, and ψ(a) is the expectation of si, conditional

on ši = a.

Intuitively, for assets with large ši, ši is a relatively precisely estimate the true si. In

contrast, for assets with small ši, more likely ši is driven by noise. As a result, we introduce

B = {i ≤ N : |ši| ≤ k̃NT
−1/2} to separate the two cases, where k̃N = k−2

N . Moreover, we set

ψ̆ and ψ as the N -dimensional vectors with entries ψ̆i := ψ̆(ŝi) and ψi := ψ(ši). It holds that

‖ψ̆ − ψ‖2 ≤
∑
i∈B

(ψ̆i − ψi)2 +
∑
i∈Bc

(ψ̆i − ψi)2. (C.39)

The majority of the proof (steps 2 - 4) is to establish that ψ̂ constructed by us estimates

conditional expectation vector ψ sufficiently precisely in the following sense:

‖ψ̆ − ψ‖2 = oP(1 + (SOPT)2). (C.40)

The last two steps prove optimality of our portfolio strategy based on the above result. We

end this step by noting that Corollary 2 states
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‖ψ‖ = S(G) = SOPT + oP(1). (C.41)

Step 2. This step control the magnitude of
∑

i∈B(ψ̆i − ψi)
2 of (C.39). It does so by

showing∑
i∈Bc

(ψi − ši)2 = oP(1 + (SOPT)2) and
∑
i∈Bc

(ψ̆i − ši)2 = oP(1 + (SOPT)2). (C.42)

Since ψi := ψ(ši), to bound
∑

i∈Bc(ψi − ši)2, we show that |ψ(a)− a| is small. On the other

hand, Tweedie’s formula reads

ψ(a)− a = T−1p
′(a)

p(a)
. (C.43)

Moreover, we have, for all positive sequence bN and all a,

|p′(a)| ≤ T

∫
|x− a|φ1/T (a− x)ps(x)dx

≤ bNT

∫
|x−a|≤bN

φ1/T (a− x)ps(x)dx+ sup
x:|x−a|>bN

T |x− a|φ1/T (a− x)

≤ bNTp(a) + sup
y:|y|>bN

T 3/2|y| exp(−Ty2/2). (C.44)

The second inequality comes from the ps(x), as a density, integrates to one. Then, choosing

bN that satisfies bN & T−1/2(logN)d with d > 1/2 and bN = o(T−1/2k̃N), which is always

possible, we obtain, for all a,

|p′(a)| ≤ cNT
1/2k̃Np(a) + cNTN

−2. (C.45)

It hence holds that

max
i

|p′(ši)|
p(ši)

.P sup
a

|p′(a)|
p(a)

1{p(a)≥T 1/2N−3/2} ≤ cNT
1/2k̃N . (C.46)

The first inequality comes from (D.13) of Lemma D3. The second directly follows from (C.45).

Combining (C.46) and (C.43), we obtain

P((ši − ψ(ši))
2 ≤ cNT

−1k̃2
N ,∀i ≤ N) ≥ 1− cN . (C.47)

As a result, ∑
i∈Bc

(ši − ψ(ši))
2 .P cNT

−1k̃2
N |Bc| ≤ cN

∑
i∈Bc

š2
i .P cN

∑
i∈Bc

ψ(ši)
2. (C.48)
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Here the first inequality is simply (C.47), the second holds since š2
i ≥ T−1k̃2

N for all i ∈ Bc

by definition, and the last inequality is a direct implication of the first two. Given (C.48), we

obtain the first part of (C.42) by noting
∑

i∈Bc ψ(ši)
2 .P (SOPT)2 + 1 due to (C.41).

Now we establish the second part of (C.42). By construction we have

ψ̆(a)− a =
1 + k2

N

T

p̂′(a)

p̂(a)
, with p̂(a) =

1

NkN

∑
i

φ1/T

(
ŝi − a
kN

)
. (C.49)

Similar to (C.44), we have, for all positive sequence bN and all a,

|p̂′(a)| ≤ T

Nk2
N

∑
i

|ŝi − a|
kN

φ1/T

(
ŝi − a
kN

)
≤ T

Nk2
N

∑
i:|ŝi−a|/kN≤bN

|ŝi − a|
kN

φ1/T

(
ŝi − a
kN

)
+

T

k2
N

sup
i:|ŝi−a|/kN>bN

|ŝi − a|
kN

φ1/T

(
ŝi − a
kN

)
≤ TbN

kN
p̂(a) +

T

k2
N

sup
y:|y|>bN

|y| exp(−Ty2/2).

Choosing bN that satisfies bN & T−1/2(logN)d with d > 1/2 and bN = o(T−1/2k̃NkN), which

is always possible, we obtain, for all a,

|p̂′(a)| ≤ cNT
1/2k̃N p̂(a) + cNT

1/2N−2. (C.50)

Therefore, it holds that

max
i

|p̂′(ŝi)|
p̂(ŝi)

≤ cNT
1/2k̃N , (C.51)

which comes from (C.50) and that p̂(ŝi) ≥ 1
NkN

φ1/T (0) &
√
T

NkN
for all i. As a result, we obtain

the second part of (C.42):∑
i∈Bc

(ψ̆i − ši)2 ≤ cNT
−1|Bc|k̃2

N + |Bc|max
i≤N
|ŝi − ši|2 ≤ cNT

−1|Bc|k̃2
N .P cN(SOPT)2 + cN .

Here the first inequality is simply substituting (C.51) into (C.49), the second inequality comes

from maxi≤N |ŝi − ši| ≤ cNT
−1/2k̃N by Lemma D2, the last inequality holds by (C.41) and

(the last two inequalities of) (C.48).

Step 3. To analyze
∑

i∈B(ψ̂i − ψi)2 of (C.39), we introduce an auxiliary function:

ψ̄(a) =

∫
xφv2/T (a− x)ps(x)dx∫
φv2/T (a− x)ps(x)dx

, with v :=
√

1 + k2
N . (C.52)
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ψ̄(a) is essentially the expectation of si, conditional on š′i = a, where š′i h N (si, v
2), i.e., š′i

has slightly more noisy than ši. The goal is to establish∑
i∈B

(ψi − ψ̄(ši))
2 = oP(1 + (SOPT)2) and

∑
i∈B

(ψ̆i − ψ̄(ši))
2 = oP(1 + (SOPT)2). (C.53)

Then the triangle inequality would give us the desired bound on
∑

i∈B(ψ̆i−ψi)2. The current

step proves the first part, whereas the next step will be devoted to show the second part.

We use p̄(a) and π̄(a) to denote the denominator and numerator of ψ̄(a) as in (C.52), and

use π(a) to denote
∫
xφ1/T (a−x)ps(x)dx so that ψ(a) = π(a)/p(a). The goal is to show that

p̄(a) and π̄(a) are, respectively, close to p(a) and π(a). We first note that φv2(y) and φ(y) are

close in that, for all y,

|φv2(y)− φ(y)| ≤ sup
y:|y|≤k−1

N

|φv2(y)− φ(y)|+ sup
y:|y|>k−1

N

|φv2(y) + φ(y)|

≤ cNk
−1
N φ(y) sup

y:|y|≤k−1
N

|y/v − y|+ cNN
−2 ≤ cNφ(y) + cNN

−2. (C.54)

Here we use (D.17) of Lemma D4 (choose j = 0) and that |v−1 − 1| h k2
N . We note

φ1/T (y) =
√
Tφ
(√

Ty
)

(and symmetrically for φv2/T (y)). Hence, using (C.54), we directly

obtain that, for all a,

|p̄(a)− p(a)| ≤
∫
|φv2/T (a− x)− φ1/T (a− x)|ps(x)dx

≤ cN

∫
φ1/T (a− x)ps(x)dx+ cN

√
TN−2 = cNp(a) + cN

√
TN−2.(C.55)

Now we bound the difference |π(a) − π̄(a)|. Because ps(x) is a even function, we note that,

for all a ≥ 0,

π(a) =

∫ ∞
0

xφ̄(|a|, x)ps(x)dx, and π̄(a) =

∫ ∞
0

xφ̄(a/v, x/v)ps(x)dx, (C.56)

where

φ̄(a, x) := φ1/T (a− x)− φ1/T (a+ x) = φ1/T (a− x)(1− e−2Txa).

Since |(1 − e−y) − (1 − e−y/v2)| ≤ cN(1 − ey) for all y ≥ 0, it follows from (C.54) and direct

calculations that, for all a ≥ 0 and x ≥ 0,

|φ̄(a/v, x/v)− φ̄(a, x)| ≤ cN φ̄(a, x) + cN
√
TN−2. (C.57)

Substituting (C.57) into (C.56), we obtain, for all a ≥ 0,
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|π̄(a)− π(a)| ≤ cN |π(a)|+ cN
√
TN−2

∫ ∞
0

xps(s)dx ≤ |π(a)|+ cN
√
TN−2. (C.58)

Here the last inequality holds by E(|s|) ≤
√

E(s2) ≤ cN due to condition (a) of Assumption

2. Because π(a) and π̄(a) are both odd functions in a due to that ps(x) is a even function of

x, (C.58) apparently holds for all a.

To establish from (C.55) and (C.58) that ψ̄(a) and ψ(a) are close, we set A := {a : |a| ≤
k̃NT

−1/2, p(a) ≥
√
TN−3/2}. Then we obtain that, for all a ∈ A,

|ψ̄(a)− ψ(a)| =

∣∣∣∣ π̄(a)

p̄(a)
− π(a)

p̄(a)

∣∣∣∣+

∣∣∣∣π(a)

p̄(a)
− π(a)

p(a)

∣∣∣∣
≤ (1 + cN)

|π̄(a)− π(a)|
p(a)

+ cN
|π(a)|
p(a)

≤ cN
N−2

p(a)
+ cNψ(a). (C.59)

Here the first equality is obvious, the first inequality comes from the lower bound of p(a) (by

the definition of A) and (C.55), the second inequality is a result of (C.58). From (C.59), it

follows that, for all a satisfying a ∈ A,

|ψ̄(a)− ψ(a)|2 ≤ cN
N−2

p(a)
+ cNψ(a)2. (C.60)

where we use Cauchy-Schwarz inequality and the lower bound of p(a). Therefore, we arrive

at

N

∫
A

|ψ̄(a)− ψ(a)|2p(a)da ≤ cN + cNN

∫ ∞
−∞

ψ(a)2p(a)da ≤ cN + cN(SOPT)2, (C.61)

which comes from (C.60) and that
∫
A
da ≤ 2k̃N . Therefore, using Chebyshev’s inequality

and comparing the definitions of sets A and B, we obtain∑
i∈B

(ψi − ψ̄(ši))
2
1{p(ši)≥

√
TN−3/2} .P E

∑
i∈B

(ψi − ψ̄(ši))
2
1{p(ši)≥

√
TN−3/2}

= N

∫
A

|ψ̄(a)− ψ(a)|2p(a)da ≤ cN + cN(SOPT)2,

where the last inequality holds by (C.61). Given (D.13) of Lemma D3, we obtain the first

part of (C.53).

Step 4. This step proves the second part of (C.53), i.e., we bound
∑

i∈B(ψ̆i− ψ̄(ši))
2. We

introduce p̃(a) and ψ̃(a) that mimick p̂(a) and ψ̂(a) by replacing the data input ši with ŝi:
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p̃(a) =
1

NkN

∑
i

φ1/T

(
ši − a
kN

)
, and ψ̃(a) = a+

v2

T

p̃′(a)

p̃(a)
. (C.62)

Then we can decompose the quantity of interest:∑
i∈B

(ψ̆i − ψ̄(ši))
2 ≤

∑
i∈B

(ψ̃(ši)− ψ̄(ši))
2 +

∑
i∈B

(ψ̆i(ŝi)− ψ̃(ši))
2. (C.63)

We first show that
∑

i∈B(ψ̃(ši)− ψ̄(ši))
2 is small. Since we have p̃(ši) ≥ 1

NkN
φ1/T (0) &

√
T

NkN

for all i, symmetric to the derivation of (C.51), we have

max
i

p̃′(ši)

p̃(ši)
≤ cNT

1/2k̃N . (C.64)

On the other hand, symmetric to the derivation of (C.46), we obtain

max
i

p̄′(ši)

p̄(ši)
.P max

i

p̄′(a)

p̄(a)
1{p(a)≥N−3/2} . cNT

1/2k̃N . (C.65)

where for the second inequality we note p̄(a) & p(a) for all a due to 1 ≤ v . 1. Substituting

(C.64) and (C.65) into the definitions of ψ̃(a) and ψ̄(a) ((C.62) and (C.52)), we obtain

max
i
|ψ̃(ši)− ψ̄(ši)| .P cN k̃NT

−1/2. (C.66)

According to Lemma 3 of Brown and Greenshtein (2009), with the additional condition that

maxi≤N
√
T |si| = o(Nd′) for every d′ > 0, we have (in our notation) that, for every d > 0,

E

(∑
i

T (ψ̃(ši)− ψ̄(ši))
2

)
. Nd.

A scrutiny of their proof of the lemma reveals that this additional condition is only indispens-

able (a) to derive three equalities: (48), (59), and (62) (the way it is used is similar across the

three), and (b) to guarantee that maxi≤N
√
T ψ̄(ši) = o(Nd) for every d > 0. In the absence

of this additional condition, a weaker result holds: for every d > d′ > 0,

E

(∑
i

min{T (ψ̃(ši)− ψ̄(ši))
2, Nd′}1{√T |ši|≤Nd′ ,p(ši)≥

√
TNd′−1}

)
. Nd. (C.67)

(C.67) turns out sufficient for establishing a desired bound on
∑

i∈B(ψ̃(ši) − ψ̄(ši))
2, which

we demonstrate now. Then we have, for every d > d′ > 0,
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∑
i∈B

T (ψ̃(ši)− ψ̄(ši))
2 .P

∑
i∈B

min{T (ψ̃(ši)− ψ̄(ši))
2, Nd′}

.P Nd +
∑
i∈B

min{T (ψ̃(ši)− ψ̄(ši))
2, Nd′}1{p(z̃i)≥√TNd′−1} . Nd. (C.68)

Here the first inequality comes from (C.66), the second inequality comes from that

E
(∑

i∈B 1{p(ši)<
√
TNd′−1}

)
. k̃NN

d′ (by the definition of set B), and the last is simply (C.67).

Next, we show that
∑

i∈B(ψ̃(ši)− ψ̄(ši))
2 is small. Lemma D2 states that

max
i∈B
|ŝi − ši| .P χN := N−1/2(εN + E(s2

j)
1/2), with εN := k5

N . (C.69)

Since ψ̆(ŝi) and ψ̃(ši) depends on {ŝj} and {šj} in the exactly same way, we can obtain the

desired result by exploiting that such dependence is sufficiently “continuous”. Concretely, we

write, uniformly over i ∈ B,

|p̂(ŝi)− p̃(ši)|

≤ 1

NkN

∑
j

∣∣∣∣φ1/T

(
ŝj − ŝi
kN

)
− φ1/T

(
šj − ši
kN

)∣∣∣∣ .P

√
TχNk

−2
N p̃(ši) +

√
TN−2k−1

N , (C.70)

|p̂′(ŝi)− p̃′(ši)|

≤ T

Nk3
N

∑
j

∣∣∣∣(ŝj − ŝi)φ1/T

(
ŝj − ŝi
kN

)
− (šj − ši)φ1/T

(
šj − ši
kN

)∣∣∣∣
.P TχNk

−4
N p̃(z̃i) + TN−2k−1

N . (C.71)

Here the first inequalities for both results hold by definition (note φ1/T (a) =
√
Tφ(
√
Ta) and

φ′(a) = −aφ(a)). The second inequalities for both results comes from substituting (C.69)

into (D.17) of Lemma D4. Since p̃(ši) ≥ 1
NkN

φ1/T (0) &
√
T

NkN
by definition, we obtain from

(C.70) and (C.71) that

max
i∈B

|p̂(ŝi)− p̃(ši)|
p̃(ši)

.P

√
TχNk

−2
N +N−1 .

√
TχNk

−2
N , (C.72)

max
i∈B

|p̂′(ŝi)− p̃′(ši)|
p̃(ši)

.P TχNk
−4
N +

√
TN−1 . TχNk

−4
N . (C.73)

Then we have

max
i∈B

∣∣∣∣ p̂′(ŝi)p̂(ŝi)
− p̃′(ši)

p̃(ši)

∣∣∣∣
≤ max

i∈B

p̃(ši)

p̂(ŝi)

|p̂′(ŝi)− p̃′(ši)|
p̃(ši)

+ max
i∈B

p̃(ši)

p̂(ŝi)

p̃′(ši)

p̃(ši)

|p̂(ŝi)− p̃(ši)|
p̃(ši)

.P TχNk
−4
N . (C.74)
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The first inequality is direct algebra. Substituting (C.64), (C.72), and (C.73) into the right-

hand-side of the first inequality, we obtain the second inequality. Combining (C.69) and

(C.74) with the definitions of ψ̂ and ψ̃ ((C.49) and (C.62)), we obtain

∑
i∈B

(ψ̆(ŝi)−ψ̃(ši))
2 ≤ N max

i∈B
|ŝi−ši|2+

N

T 2
max
i∈B

∣∣∣∣ p̂′(ŝi)p̂(ŝi)
− p̃′(ši)

p̃(ši)

∣∣∣∣2 .P k
−8
N (ε2N+E(s2

j)). (C.75)

The goal is to show
∑

i∈B(ψ̆(ŝi)− ψ̃(ši))
2 = oP(1 + (SOPT)2), which is apparently true from

(C.75) if E(s2
j) ≤ ε2N . For the case E(s2

j) > ε2N , we observe

E(s2
j) = E(s2

j1{εN/2<|si|≤1})+E(s2
j1{|si|≤εN/2})+E(s2

j1{|si|>1}) ≤ P(|si| > εN/2)+ε2N/4+cNN
−1,

where the last step comes from condition (a) of Assumption 2. We hence obtain P(|si| >
εN/2) & ε2N , which futher indicates

∑
i 1{|si|≥εN/2} &P Nε

2
N (the sum follows binomial distri-

bution with its standard deviation dominated by its mean). As a result, we write

Nε4N .P

∑
i

ε2N1{|si|≥εN/2} .P

∑
i

š2
i1{|ši|≥εN/4} .

∑
i∈Bc

š2
i .P 1 + (SOPT)2. (C.76)

Here the second inequality comes from ši − si = ε̄i and maxi |ε̄i| .
√

(logN)/T by the

uniform bound on i.i.d normal variables. The thrid inequality holds by the definition of B,

and the last inequality can be established from holds by (C.41) and (the last two inequalities

of) (C.48). Since E(s2
j) ≤ 1 + E(s2

j1{|si|>1}) . 1 by condition (a) of Assumption 2, it follows

from (C.76) that k−8
N E(s2

j) = oP(1+(SOPT)2). Given (C.75), we prove
∑

i∈B(ψ̆(ŝi)−ψ̃(ši))
2 =

oP(1 + (SOPT)2). Substituting this result and (C.68) into (C.63), we obtain
∑

i∈B(ψ̆(ŝi) −
ψ̃(ši))

2 = oP(1 + (SOPT)2), i.e., the second part of (C.53). Substituting (C.42) and (C.53)

into (C.39), we finally establish (C.40).

Step 5. The goal of this step is to establish

‖ψ̂ − ψ‖ = oP(1 + SOPT). (C.77)

We start by defining

lj = arg min
i≤N
|ši − ŝj|. (C.78)

Suppose šli > šlj and ŝi ≤ ŝj for some (i, j). According to (C.78), we have |šli− ŝi| ≤ |šlj− ŝi|
and |šlj − ŝj| ≤ |šli − ŝj|. The former would lead to šli + šlj < 2ŝi, and the latter would lead

to šli + šlj > 2ŝj. They together contradict ŝi ≤ ŝj. Hence we have šli ≤ šlj if ŝi ≤ ŝj for

all (i, j). Since ψ(a) is increasing in a (see, e.g., Efron (2011)), letting ψ∗i = ψ(šli), we have
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ψ∗i ≤ ψ∗j if ŝi ≤ ŝj for all (i, j). As a result, we have

‖ψ̂ − ψ̆‖ ≤ ‖ψ∗ − ψ̆‖ ≤ ‖ψ∗ − ψ‖+ oP(1 + SOPT). (C.79)

The first inequality comes from the definition of ψ̂ and that ψ∗i ≤ ψ∗j if ŝi ≤ ŝj for all (i, j)

established above. The second inequality comes from (C.40) proved in steps 2 - 4.

Given (C.40) and (C.79), to obtain (C.77) we only need to bound ‖ψ∗ − ψ‖. For this

purpose, we note that (C.78) leads to |šli − ŝi| ≤ |ši − ŝi| for all i. Applying Lemma D2, we

obtain

max
1≤i≤N

|šli − ši| .P cN k̃NT
−1/2, max

i∈B
|šli − ši| .P χN , (C.80)

where χN = N−1/2(εN + E(s2
j)

1/2) with εN := k5
N . Similar to (C.48), we have∑

i∈Bc

((šli−ψ(šli))
2+(šli−ši)2) .P cNT

−1k̃2
N |Bc| ≤ cN

∑
i∈Bc

ψ(ši)
2 .P oP(1+(SOPT)2). (C.81)

Here the first inequality comes from (C.47) and the first part of (C.80). The second inequality

is already shown in (C.48). The last inequality is established right below (C.48). Combining

(C.81) and the first part of (C.42), and applying the triangle inequality, we obtain∑
i∈Bc

(ψ(šli)− ψ(ši))
2 = oP(1 + (SOPT)2). (C.82)

Next, it holds that, uniformly over i ∈ B,

|p(šli)− p(ši)| ≤
∫
|φ1/T (šli − x)− φ1/T (ši − x)|ps(x)ds

. (T logN)1/2|šli − ši|p(ši) + cN
√
TN−2

.P (T logN)1/2χNp(ši) + cN
√
TN−2. (C.83)

|p(šli)′ − p(ši)′| ≤ T

∫
|(šli − x)φ1/T (šli − x)− (ši − x)φ1/T (ši − x)|ps(x)ds

. (T logN)|šli − ši|p(ši) + cNTN
−2

.P (T logN)χNp(ši) + cNTN
−2. (C.84)

For both (C.83) and (C.84), the first inequalities holds by definition of p(a), the second

inequalities come from (D.17) of Lemma D4 (choose j = 0 and j = 1 respectively), and the

last inequalities come from the second part of (C.80). Then we have, uniformly over i for

which ši ∈ A (A is defined above (C.59)),
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|ψ(šli)− ψ(ši)| ≤ |šli − ši|+
1

T

|p(šli)′ − p(ši)′|
p(šli)

+
|p(ši)′|
T

∣∣∣∣ 1

p(šli)
− 1

p(ši)

∣∣∣∣
.P χN + χN +

χN√
T

p(ši)
′

p(ši)
. χN

(
k̃N +

√
T |ψ(ši)|

)
. (C.85)

The first inequality is obvious. The second inequality comes from the second part of (C.80),

(C.83), (C.84), that p(ši) ≥
√
TN−3/2 by the definition of A, and that 1/

√
NT . χN as

T & Nd for fixed d > 1/2 by assumption. The last inequality comes from (C.43) and

|ši| ≤ k̃N as ši ∈ A. Therefore, we have∑
i∈B

(ψ(šli)− ψ(ši))
2
1{p(ši)≥

√
TN−3/2}

=
∑
i:ši∈A

(ψ(šli)− ψ(ši))
2 .P Nχ

2
N k̃

2
N + Tχ2

N

∑
i∈B

ψ(z̃i)
2

.P (ε2N + E(s2
j))k̃

2
N + oP(1 + (SOPT)2) = oP(1 + (SOPT)2). (C.86)

The equality is obvious and the first inequality comes from (C.85). The second inequality

comes from (C.41) and that Tχ2
N = o(1) due to E(s2

j) = o(1) and T . Nd′ for fixed d′ < 1.

The last inequality is established in the analysis after (C.75). Combining (C.86), Lemma D3,

and (C.82), we establish ‖ψ∗ − ψ‖ = oP(1 + SOPT). Substituting this into (C.79) and using

(C.40) lead to (C.77).

Step 6. This step combines (C.77) with (C.41) to prove the theorem, i.e., that the Sharpe

ratio of the strategy ŵOPT we construct achieves (SOPT)2 asymptotically. Since Sharpe ratio

is invariant to scaling of weights, we can treat ŵOPT as ŵOPT = Mβw̆, where w̆ := Σ̂
−1/2
u ψ̂.

Using condition (a) of Assumption 1 and (D.1) of Lemma D1, we have maxi≤N |σ̂i/σi −
1| .P cN . As a result, we obtain ‖Σ1/2w̆ − ψ̂‖ .P cN‖ψ̂‖. Then, it follows from (C.77) and

(C.41) that

‖Σ1/2
u w̆ − ψ‖ ≤ ‖Σ1/2w̆ − ψ̂‖+ ‖ψ̂ − ψ‖ .P cN‖ψ‖+ ‖ψ̂ − ψ‖ = oP(1 + SOPT). (C.87)

Hence we have

|(w̆ᵀΣ1/2
u − ψᵀ)ψ| ≤ ‖Σ1/2

u w̆ − ψ‖‖ψ‖ = oP(1 + (SOPT)2), (C.88)

|w̆ᵀΣuw̆ − ψᵀψ| ≤ ‖Σ1/2
u w̆ − ψ‖2 + 2‖Σ1/2

u w̆ − ψ‖‖ψ‖ = oP(1 + (SOPT)2). (C.89)

Here for both (C.88) and (C.89), the first inequalities come from Cauchy-Schwarz, whereas

the last equalities come from (C.87) and (C.41). Further, substituting (C.41) into (C.88) and
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(C.89), we obtain

w̆ᵀΣ1/2
u ψ = (SOPT)2 + oP(1 + (SOPT)2), w̆ᵀΣuw̆ = (SOPT)2 + oP(1 + (SOPT)2). (C.90)

Next, we note that

‖Pβw̆‖ ≤ ‖PβΣ−1/2
u ψ‖+ ‖Pβ(w̆ − Σ−1/2

u ψ)‖

= ‖PβΣ−1
u α̃‖+ (w̆ − Σ−1/2

u ψ)ᵀPβ(w̆ − Σ−1/2
u ψ)

≤ ‖PβΣ−1
u α̃‖+ ‖w̆ − Σ−1/2

u ψ‖ = oP(1 + SOPT). (C.91)

To obtain the last equality, we note that the first term can be bounded using (C.18) as

w̌′ := 1
κ
PβΣ−1

u α̃ and that the second term can be bounded using (C.87) and 1 .P λmin(Σu).

As a result, we obtain

w̆ᵀMβΣuMβw̆ = w̆ᵀΣuw̆ + w̆ᵀPβΣuPβw̆ − 2w̆ᵀΣuPβw̆ = w̆ᵀΣuw̆ + oP(1 + (SOPT)2). (C.92)

For the last equality, we use (C.89), (C.91), and λmax(Σu) .P 1 by condition (a) of Assumption

1. Similarly, we write

w̆ᵀMβα̃ = w̆ᵀα̃− w̆ᵀPβα̃ = w̆ᵀα̃ + oP(1 + (SOPT)2), (C.93)

where for the last equality, we use (C.91) and ‖α̃‖2 .P α̃Σ−1
u α̃ = (SOPT)2.

We now conclude that, when SOPT does not vanish,

ŜOPT =
(ŵOPT)ᵀα√

(ŵOPT)ᵀΣŵOPT
=

w̆ᵀMβα√
w̆ᵀMβΣMβw̆

=
w̆ᵀMβα̃√

w̆ᵀMβΣuMβw̆
+ oP(1)

=
w̆ᵀα̃√
w̆ᵀΣuw̆

+ oP(1 + SOPT) = SOPT + oP(1 + SOPT). (C.94)

The first two equalities hold by definition. The third one comes (C.9) and that Mβw̆ is G-

measurable and factor-neutral. The fourth one comes from (C.92), (C.93), and the second

part of (C.90). The last equality comes from (C.90) (α̃ = Σ
1/2
u ψ). Because ŵOPT is G-

measurable and βᵀŵOPT = 0, Theorem 2 and Corollary 2 apply. We hence have ŜOPT ≤
S(G) + oP(1) = SOPT + oP(1). Because −ŜOPT is the Sharpe ratio generated by −ŵOPT, we

also have −ŜOPT ≤ SOPT+oP(1). As a result, when SOPT does vanish, we have ŜOPT = oP(1).

Therefore, given (C.94) and using the subsequence argument (see, e.g., Andrews and Cheng

(2012)), we have

ŜOPT = SOPT + oP(1 + SOPT).
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In other words, we have, for all P ∈ P,

lim
N,T→∞

P(|ŜOPT − SOPT| ≥ εSOPT + ε) = 0. (C.95)

Suppose the theorem does not hold, then there is a sequence of data-generating processes Pk

with Pk ∈ P for each k ∈ {1, 2, ...} such that

lim sup
N,T→∞

lim
k→∞

Pk(|ŜOPT − SOPT| ≥ εSOPT + ε) > 0.

This contradicts (C.95), and the theorem is proved.

C.5 Proof of Proposition 1

By definition we have

(Ŝ?)2 = αᵀMβΣ̂−1
u Mβα + 2αᵀMβΣ̂−1

u Mβū+ ūᵀMβΣ̂−1
u Mβū− T−1N.

We start with the analysis of αᵀMβΣ̂−1
u Mβα. From (D.1) of Lemma D1, it follows

‖Σ̂u − Σu‖MAX .P

√
T−1 logN. (C.96)

As a result, noting P(0 ≤Mβ ≤ IN)→ 1 and P(Σu h IN)→ 1 by the assumption ‖β‖MAX .P

1 and λmin(βᵀβ) &P N , and recalling (S?)2 = αᵀΣ−1
u α, we have

|αᵀMβΣ̂−1
u Mβα− αᵀMβΣ−1

u Mβα| .P

√
T−1 logN(S?)2. (C.97)

On the other hand, it holds that

|αᵀMβΣ−1
u Mβα− αᵀΣ−1

u α| ≤ αᵀPβΣ−1
u Pβα + 2

√
(αᵀΣ−1

u α)(αᵀPβΣ−1
u Pβα)

.P αᵀPβα +
√

(αᵀΣ−1
u α)(αᵀPβα)

.P N−1‖αᵀβ‖2 +
√
N−1(αᵀΣ−1

u α)‖αᵀβ‖2

.P E(s2
i ) + S?E(s2

i )
1/2. (C.98)

Here the first inequality comes from Cauchy-Schwarz inequality. The second comes from

P(Σu h IN)→ 1 and P2
β = Pβ. We obtain the third line by using λmin(βᵀβ) & N . The last line

holds because of Chebyshev’s inequality and that E(‖αᵀβ‖2|β,Σu) . N‖β‖2
MAXE(α2

i |Σu) ≤
N‖β‖2

MAXλmax(Σu)E(s2
i ) by condition (a) of Assumption 1 and condition (b) of Assumption

2.
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On the other hand, because of the assumption E(s2
i1{|si|≥cN}) ≤ cNN

−1, we have

E

∣∣∣∣∣αᵀΣ−1
u α−

∑
i

s2
i1{|si|<cN}

∣∣∣∣∣ = E

∣∣∣∣∣∑
i

s2
i1{|si|≥cN}

∣∣∣∣∣ = o(1),

which, by Markov’s inequality, leads to

αᵀΣ−1
u α =

∑
i

s2
i1{|si|<cN} + oP(1).

Moreover, it holds that

Var

∣∣∣∣∣∑
i

s2
i1{|si|<cN}

∣∣∣∣∣ ≤∑
i

E(s4
i1{|si|<cN}) ≤ c2

N

∑
i

E(s2
i1{|si|<cN}).

Using Chebyshev’s inequality, we obtain

(S?)2 = αᵀΣ−1
u α ≥

∑
i

s2
i1{|si|<cN} &P

∑
i

E(s2
i1{|si|<cN}) ≥ NE(s2

i ) + o(1).

Combining this result with (C.98) and (C.97), we have

αᵀMβΣ̂−1
u Mβα = (S?)2 + oP

(√
T−1 logN((S?)2 + 1)

)
. (C.99)

Next, we study αᵀMβΣ̂−1
u Mβū. It holds that

αᵀMβΣ̂−1
u Mβū . αᵀMβΣ̂−1

u MβΣ̂−1
u Mβα

√
ūᵀū . αᵀα

√
ūᵀū = OP(((S?)2 + 1)T−1/2). (C.100)

The first inequality comes from Cauchy-Schwarz. The second inequality holds because

P(Mβ h IN)→ 1, M2
β = Mβ, and P(Σ̂u h IN)→ 1 due to P(Σu h IN)→ 1 and (C.96). The

third inequality holds by P(Σ̂u h IN)→ 1 as well.

Now we analyze ūᵀMβΣ̂−1
u Mβū− T−1N . We write

N = tr(Σ̂−1
u Σ̂u) =

∑
i≤N

(Σ̂−1
u )i,i

(
T−1

∑
s∈T

(Mβus)
2
i − (Mβū)2

i

)
= T−1

∑
s∈T

uᵀsMβΣ̂−1
u Mβus − ūᵀMβΣ̂−1

u Mβū

= T−1
∑
s∈T

uᵀsMβΣ̂−1
u Mβus +OP(N/T ). (C.101)

The last line comes from ūᵀMβΣ̂−1
u Mβū .P ū

ᵀū because of M2
β = Mβ and P(Σ̂u h IN) → 1.
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Furthermore, I have

ūᵀMβΣ̂−1
u Mβū− ūᵀΣ̂−1

u ū ≤ 2|ūᵀΣ̂−1
u Pβū|+ ūᵀPβΣ̂−1

u Pβū

.P

√
ūᵀū
√
ūᵀPβū+ ūᵀPβū .P N

1/2/T. (C.102)

Here we obtain the second inequality using P(Σ̂u h IN) → 1 and the last inequality using

P(Pβ . IN)→ 1. Similarly, it holds that

T−2
∑
t∈T

(uᵀtMβΣ̂−1
u Mβut − uᵀt Σ̂−1

u ut)

= T−2
∑
t∈T

(
2
√
uᵀtut

√
uᵀtPβΣ̂−1

u Pβut + uᵀtPβΣ̂−1
u Pβut

)
.P T−2

∑
t∈T

(√
uᵀtut

√
uᵀtPβut + uᵀtPβut

)
.P

N1/2

T
. (C.103)

From (C.101), (C.102), and (C.103), it directly follows

ūᵀMβΣ̂−1
u Mβū− T−1N = ūᵀΣ̂−1

u ū− T−2
∑
s∈T

uᵀsΣ̂
−1
u us +OP(N1/2/T +N/T 2). (C.104)

On the other hand, we have

Σ̂−1
u = −Σ−2

u (Σ̂u − 2Σu) + Σ−2
u Σ̂−1

u (Σ̂u − Σu)
2.

It then follows from (C.96) and P(Σu h IN)→ 1 that

ūᵀΣ̂−1
u ū = −ūᵀΣ−2

u (Σ̂u − 2Σu)ū+OP(T−1(logN)ūᵀū)

= −ūᵀΣ−2
u (Σ̂u − 2Σu)ū+OP(T−2N logN). (C.105)

Similarly, we have

T−2
∑
t∈T

uᵀt Σ̂
−1
u ut = −T−2

∑
t∈T

uᵀtΣ
−2
u (Σ̂u − 2Σu)ut +OP(T−2N logN). (C.106)

Substituting (C.105) and (C.106) into (C.104), we have

ūᵀMβΣ̂−1
u Mβū− T−1N = −ūᵀΣ−2

u (Σ̂u − 2Σu)ū+ T−2
∑
t∈T

uᵀtΣ
−2
u (Σ̂u − 2Σu)ut

+OP(T−1N1/2 + T−2N logN). (C.107)

27



Now we analyze Σ̂u. We write

(Σ̂u)i,i = (T−1uuᵀ)i,i + (Mβūū
ᵀMβ)i,i

+(PβT−1uuᵀ)i,i + (T−1uuᵀPβ)i,i + (PβT−1uuᵀPβ)i,i. (C.108)

From the uniform bound on i.i.d. random variables and ‖Pβ‖MAX . N−1 by the assumption

‖β‖MAX .P 1 and λmin(βᵀβ) &P N , it follows

‖Mβūū
ᵀMβ‖MAX .P ‖ūūᵀ‖MAX = ‖ū‖2

MAX . T−1 logN.

Using P(Σu h IN)→ 1, this gives∑
i≤N

|ū2
i (Σ

−2
u )i,i(Mβūū

ᵀMβ)i,i| .P T
−1(logN)

∑
i≤N

ū2
i .P T

−2N logN, (C.109)

and

T−2
∑
t∈T

∑
i≤N

|u2
i,t(Σ

−2
u )i,i(Mβūū

ᵀMβ)i,i| .P T
−3(logN)

∑
t∈T

∑
i≤N

u2
i,t .P T

−2N logN. (C.110)

Further, we obtain ∑
i≤N,j≤K

E(|(T−1uuᵀβ)i,j||β,Σu)

≤
∑

i≤N,j≤K

√
E((T−1uuᵀ)i,i|Σu)E((T−1βᵀuuᵀβ)j,j|β,Σu)

=
∑

i≤N,j≤K

√
(Σu)i,i(βᵀΣuβ)j,j ≤ N3/2K‖β‖MAXλmax(Σu) .P N

3/2. (C.111)

The first inequality comes from Cauchy-Schwarz. The last inequality directly follows from

condition (a) of Assumption 1. Similarly,∑
j≤K,k≤K

E(|(T−1βuuᵀβ)j,k||β,Σu)

≤
∑

j≤K,k≤K

√
E((T−1βᵀuuᵀβ)j,j|β,Σu)E((T−1βᵀuuᵀβ)j,j|β,Σu)

=
∑

j≤K,k≤K

√
(βᵀΣuβ)j,j(βᵀΣuβ)k,k ≤ KN‖β‖MAXλmax(Σu) .P N. (C.112)

From (C.111) and (C.112), it directly follows
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∑
i≤N,j≤K

|(T−1uuᵀβ)i,j| .P N
3/2,

∑
j≤K,k≤K

|(T−1βuuᵀβ)j,k| .P N. (C.113)

Using (C.113), and noting maxi≤N |ūi| .P

√
T−1 logN from the uniform bound on i.i.d.

random variables and ‖(βᵀβ)−1β‖MAX . N−1 by assumption, we obtain∑
i≤N

|ū2
i (T

−1uuᵀPβ)i,i|

≤
∑

i≤N,j≤K

|ū2
i (T

−1uuᵀβ)i,j|‖(βᵀβ)−1β‖MAX

.P N−1T−1 logN
∑

i≤N,j≤K

|(T−1uuᵀβ)i,j| .P N
1/2T−1 logN, (C.114)

and ∑
i≤N

|ū2
i (Pβ(T−1uuᵀ)Pβ)i,i|

≤
∑

i≤N,j≤K,k≤K

ū2
i |(T−1βuuᵀβ)j,k|‖(βᵀβ)−1β‖2

MAX

.P N−1T−1 logN
∑

j≤K,k≤K

|(T−1βuuᵀβ)j,k| .P T
−1 logN. (C.115)

Symmetric reasoning leads to

1

T 2

∑
s∈T

∑
i≤N

|u2
i,s(T

−1uuᵀPβ)i,i| .P N1/2T−1, (C.116)

1

T 2

∑
s∈T

∑
i≤N

|u2
i,s(Pβ(T−1uuᵀ)Pβ)i,i| .P T−1. (C.117)

Substituting (C.109), (C.110), (C.114), (C.116), (C.115), and (C.117) into (C.107) and

(C.108), we obtain

ūᵀMβΣ̂−1
u Mβū− T−1N = −T−2

∑
i:i≤N

Ai +OP(T−1N1/2 logN + T−2N logN). (C.118)

Here and only here we use short-hand notation

Ai =
∑
t∈T

∑
t′∈T :t′ 6=t

(Σ−2
u )i,i(T

−1uuᵀ − 2Σu)i,iui,tui,t′ .

Since Ai is i.i.d. across i, we only need to analyze it for a single i. It obviously holds that

E(Ai|Σu) = 0. We also note E(((T−1uuᵀ−2Σu)i,i)
2ui,tui,t′ui,sui,s′|Σu) = 0 unless two elements
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of {t, t′, s, s′} are the same, and E(((T−1uuᵀ − 2Σu)i,i)
2ui,tui,t′ui,sui,s′|Σu) . T−2E(u8

i,t|Σu)

unless elements of {t, t′, s, s′} only take two different values. Then we obtain

E(A2
i |Σu) . T 2(Σ−4

u )i,iE(u8
i,t|Σu).

It hence follows that

T−2
∑
i:i≤N

Ai .P T
−1N1/2E(u8

i,t(Σ
−4
u )i,i) . T−1N1/2, (C.119)

where the last inequality comes from that εi,t has finite eighth moment by condition (a) of

Assumption 2. Subsituting (C.119) into (C.118), we obtain

ūᵀMβΣ̂−1
u Mβū− T−1N = OP(T−1N1/2 logN + T−2N logN). (C.120)

Combining (C.99), (C.100), and (C.120), and noting N1/2T ≤ cN and T . N by assumption,

we obtain

(Ŝ?)2 = (S?)2 + oP

(
T−1/2

√
logN((S?)2 + 1) + T−1N1/2 logN

)
= (S?)2 + oP(T−1N1/2 logN((S?)2 + 1)).

Therefore, we obtain, under S? ≥ C,

(Ŝ?)2 = (S?)2(1 + oP(T−1N1/2 logN)), =⇒ Ŝ? − S?

S?
= oP(T−1N1/2 logN).

And, under S∗ ≤ cN , we have

(Ŝ?)2 = (S?)2 + oP(T−1N1/2 logN), =⇒ Ŝ? − S? = oP

(√
T−1N1/2 logN

)
.

We note by construction (S̃?)2 = (Ŝ?)2 +N/T . Then, under S? ≥ C, it holds that

(Ŝ?)2 = (S?)2+
N

T
+(S?)2oP

(√
N logN

T

)
=⇒

Ŝ? −
√

(S?)2 +N/T

S?
= oP

(√
N logN

T

)
.

Similarly, under S∗ ≤ cN , we have

(Ŝ?)2 = (S?)2 +
N

T
+ oP

(√
N logN

T

)
=⇒ Ŝ? −

√
(S?)2 +N/T = oP

(√
N logN

T

)
.

The proof concludes.
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C.6 Proof of Proposition B1

We note that all the assumptions in Theorem 2, other than the factor-neutrality, are assumed

here as well. Therefore, equation (C.8) in the proof of Theorem 2 stays valid, since factor-

neutrality is used only after the derivation of (C.8). Applying Cauchy-Schwarz inequality to

(C.8), we obtain

|S(w)| ≤
√

E(rt+1|G)ᵀΣ−1E(rt+1|G) + oP(1). (C.121)

On the other hand, it implies by Woodbury matrix identity and from the fact that Σ =

βΣvβ
ᵀ + Σu,

Σ−1 = Σ−1
u − Σ−1

u β(Σ−1
v + βᵀΣ−1

u β)−1βᵀΣ−1
u . (C.122)

By direct calculations, we have

βᵀΣ−1β = ((βᵀΣ−1
u β)−1 + Σv)

−1.

Let H1 = (βᵀΣ−1
u β)−1 and H2 = Σv, and using the fact that (H1 + H2)−1 −H−1

2 = −(H1 +

H2)−1H1H
−1
2 , we have

βᵀΣ−1β − Σ−1
v = −((βᵀΣ−1

u β)−1 + Σv)
−1(βᵀΣ−1

u β)−1Σ−1
v .

Therefore, using the fact that λmin(βᵀβ) &P N and that λmax(Σu) .P 1 by assumption, we

have

λmax((βᵀΣ−1
u β)−1) = λ−1

min(βᵀΣ−1
u β) ≤ λ−1

min(βᵀβ)λmax(Σu) .P N
−1. (C.123)

Also, note that λmax(Σ−1
v ) = λ−1

min(Σv) . 1, and that

λmax(((βᵀΣ−1
u β)−1 + Σv)

−1) = λ−1
min((βᵀΣ−1

u β)−1 + Σv) ≤ λ−1
min(Σv) . 1,

we have

‖βᵀΣ−1β − Σ−1
v ‖ .P N

−1,

which in turn leads to

γᵀβᵀΣ−1βγ = γᵀΣ−1
v γ + oP(1). (C.124)

Next, we show

E(α|G)ᵀΣ−1βγ = oP(1). (C.125)

Notice that E(E(α|G)|Σ, β) = E(α|Σ, β) = E(α|Σ) = 0 (by conditions (a) and (b) of Assump-

tion 1), and that, conditionally on (Σ, β), E(αi|G) is independent across i as demonstrated

in the beginning of the proof of Theorem 2. Therefore,
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E((E(α|G)ᵀΣ−1βγ)2|Σ, β) ≤
∑
i≤N

E(E(αi|G)2|Σ, β) max
j≤N

(γᵀβᵀΣ−1)2
j . (C.126)

On the other hand, from (C.122), we obtain

γᵀβᵀΣ−1 = γᵀΣ−1
v (Σ−1

v + βᵀΣ−1
u β)−1βᵀΣ−1

u .

Because of λmin(Σv) & 1, ‖β‖MAX .P 1, ‖Σu‖MAX ≤ ‖Σu‖ .P 1, λmin(Σu) &P 1, Σu is

diagonal, and (C.123), we have

‖γᵀβᵀΣ−1‖MAX .‖(Σ−1
v + βᵀΣ−1

u β)−1‖‖βᵀΣ−1
u ‖MAX .P λmax((βᵀΣ−1

u β)−1) .P N
−1.

Hence, we have, for all positive fixed ε,

P(|E(α|G)ᵀΣ−1βγ| ≥ ε|Σ, β) ≤ E((E(α|G)ᵀΣ−1βγ)2|Σ, β)/ε2 = oP(1), (C.127)

where the last equality comes from (C.126) and that E
(∑

i≤N E(E(αi|G)2|Σ, β)
)
≤∑

i≤N E(α2
i ) = o(N) by condition (a) of Assumption 1. Since P(|E(α|G)ᵀΣ−1βγ| ≥ ε|Σ, β) ≤ 1

are uniformly bounded for all N (by definition), we obtain by taking expectations on both

sides of (C.127) that, for all positive fixed ε,

P(|E(α|G)ᵀΣ−1βγ| ≥ ε) = o(1),

which is equivalent to (C.125).

Finally, we derive

E(α|G)ᵀΣ−1E(α|G) = E(α|G)ᵀΣ−1
u E(α|G) + oP(1). (C.128)

Following the same derivation for (C.126), we obtain

E(|E(α|G)ᵀΣ−1
u β|2F|Σ, β) ≤

∑
i≤N

E(E(αi|G)2|Σ, β) max
j

(Σ−1
u ββᵀΣ−1

u )j,j.

Because ‖β‖MAX .P 1 and λmin(Σu) &P 1, we have

max
j

(Σ−1
u ββᵀΣ−1

u )j,j . ‖Σ−1
u β‖2

MAX .P 1.

Then given the above result that E
(∑

i≤N E(E(αi|G)2|Σ, β)
)

= o(N), we obtain that

E(|E(α|G)ᵀΣ−1
u β|2F|Σ, β) = oP(N). Therefore, similar to the derivation of (C.125), we ob-
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tain

|E(α|G)ᵀΣ−1
u β|2F = oP(N).

On the other hand, using (C.123), we obtain

‖(Σ−1
v + βᵀΣ−1

u β)−1‖ = λ−1
min(Σ−1

v + βᵀΣ−1
u β) ≤ λmax((βᵀΣ−1

u β)−1) .P N
−1. (C.129)

Then, using (C.129), we have

E(α|G)ᵀΣ−1
u β(Σ−1

v + βᵀΣ−1
u β)−1βᵀΣ−1

u E(α|G)

≤|E(α|G)ᵀΣ−1
u β|2F‖(Σ−1

v + βᵀΣ−1
u β)−1‖ = oP(1),

and hence, in light of (C.122), we obtain (C.128).

Given that E(rt+1|G) = E(α|G) + βγ, it follows from (C.124), (C.125), and (C.128) that

E(rt+1|G)ᵀΣ−1E(rt+1|G) = E(α|G)ᵀΣ−1
u E(α|G) + γᵀΣ−1

v γ + oP(1).

In light of (C.121), we conclude the proof.

C.7 Proof of Propositions B2, B3, and B4

We present the notation that is used throughout Section C.7 and Appendix E to facilitate

the exposition of our proofs. We write

ζ :=
√
Tµ/σ, ži :=

√
T ši, ẑi :=

√
T ŝi.

ζ represents the signal strengh of our alphas. ẑi is simply the t-statistic and ži is hypothetically

what the t-statistic would be in the absence of risk factors. Next, we introduce soft- and hard-

thresholding functions:

ψ̃1(a, λ) := sgn(a)(|a| − λ), ψ̃2(a, λ) := a1{|a|≥λ}.

Then, for q ∈ {1, 2} and i ∈ {1, . . . , N},

ψ̃q,i(λ) := ψ̃q(ž1, λ), ψ̂q,i(λ) := ψ̃q(ẑi, λ).

Further, ψ̃q(λ) and ψ̂q(λ) to represent, repectively, the vectors (ψ̃q(ž1, λ), . . . , ψ̃q(žN , λ))ᵀ and

(ψ̂q,1(λ), . . . , ψ̂q,N(λ))ᵀ. Based on ψ̂q(λ), we introduce ŵ′q(λ) := Σ̂
−1/2
u ψ̂q(λ). The purpose of

doing so is that ŵ′q(λ), with appropriate choice of λ, incorporates the weights of Lasso, CSR,
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and BH methods all as special cases. Lastly, we define

Ŝ ′q(λ) :=
ŵ′q(λ)Mβα

σ‖Mβŵ′q(λ)‖
, Sq(λ) :=

N1/2E(ψ̃q,i(λ)ψi)

E(ψ̃q,i(λ)2)1/2
.

Ŝ ′q(λ) is the Sharpe ratio generated by the strategy ŵ′q(λ). Sq(λ), again with appropriate

choice of λ, incorporates as special cases SCSR, SBH, and SLASSO (the probability limits of

Sharpe ratios) all as special cases.

C.7.1 Proof of Proposition B2

By definition it holds that Σ̂−1
u α̂ = w̆1(λ) under λ = 0. Hence we have ŜCSR = Ŝ1(λ), choosing

λ = 0. In other words, CSR is a special case of Lasso. On the other hand, by definition we

have, choosing λ = 0,

SLasso
λ = N1/2E(šisi)E(š2

i )
−1/2. (C.130)

Moreover, we can write

√
T × E(šisi) =

ρµ

2σ

∫
a(φ(a− ζ)− φ(a+ ζ))da =

ρµζ

σ
, (C.131)

T × E(š2
i ) =

∫
a2(φ(a) + ρφ(a− ζ))da = 1 + ρ(1 + ζ2) = (1 + o(1))(1 + ρζ2). (C.132)

For both lines, the first equalities come from the distribution of αi imposed by Example 1,

si = αiσ
−1 by definition, and

√
T (ši − si) is standard normal. The second equalities hold

by direct calculations. The last equality of the second line comes from ρ → 0. Therefore, it

holds that, choosing λ = 0,

ŜCSR = Ŝ1(λ) = SLasso
λ + oP(1 + SOPT) = SCSR + oP(1 + SOPT). (C.133)

Here the second equality comes from Ŝ1(λ) = SLasso
λ + oP(1 + SOPT) as in Proposition B4.

The third equality comes from (C.130), (C.131), (C.132), ζ =
√
Tµ/σ by definition, and that

|SCSR| ≤ SOPT + oP(1) by Theorem 2 and Corollary 2.

Now we verify the sufficient and necessary condition. We utilize the last equality of

(C.133), i.e., that CSR is a special case of Lasso, and the optimality conditions for Lasso

provided in Proposition B4. We start with the “if” part. Invoking the classic subsequence

argument, we only need to consider the two cases
√
Tµ/σ → 0 and

√
ρTµ/σ →∞ separately.

The former case is obvious since λ = 0 certainly satisfies T 1/2λ → 0 condition required by

Proposition B4. For the latter case, noting that
√
ρTµ/σ → ∞ always leads to

√
Tµ/σ −

√
−2 log ρ → ∞ due to − log ρ h logN by assumption, we only need to verify that, under
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λ = 0, we have both
√
T (µ/σ − λ) → ∞ and

φ(
√
Tλ)

ρ(1+Tλ2)T (µ/σ−λ)2
→ 0 as in Proposition B4.

Both are obviously true.

Next we show the “only if” part. As
√
Tµ/σ → 0 is violated, we only need to show that,

if
√
ρTµ/σ → ∞ is violated, we would not have

φ(
√
Tλ)

ρ(1+Tλ2)T (µ/σ−λ)2
→ 0 under λ = 0. This is

also obvious. The proof ends.

C.7.2 Proof of Proposition B3

Proof of Proposition B3, Part 1. In this part we prove ŜBH
τ = SBH

τ + oP(1 + SOPT). By

assumption there exists fixed d > 0 such that µ ≤ N−d. Then there exists fixed (d1, d2, d3)

such that 0 < d1 < d2 < d3 < min{d, 1}. We also set cx =
√

2(1− x) logN .

We let z̆ = −Φ−1(p(k̂)/2) and z̆′ = −Φ−1(p(k̂+1)/2), where we recall Φ is the standard

normal cdf. In other words, z̆ and z̆′ are the t-statistics whose p-values, calculated based on

standard normal distribution, are p(k̂) and p(k̂+1). We further define, for j ∈ {0,+,−},

mj(a) =
∑
i∈Hj

1{|ẑi|≥a}, m̌j(a) =
∑
i∈Hj

1{|ži|≥a},

where H0 = {i ≤ N : αi = 0}, H+ = {i ≤ N : αi = ζ}, H− = {i ≤ N : αi = −ζ}, and

ẑi = T 1/2ŝi is the t-statistic of stock i. From the definitions of z̆ and z̆′, we obtain

2NΦ(−z̆)∑
j∈{0,+,−}mj(z̆)

≤ τ,
2NΦ(−z̆′)∑
j∈{0,+,−}mj(z̆′)

> τ,
∑

j∈{0,+,−}

mj(z̆
′) =

∑
j∈{0,+,−}

mj(z̆) + 1.

(C.134)

Given (E.74) and the monotonicity of mj(z) in z, there exists a positive sequence bN =

o
(
1/
√

logN
)

such that, with high probability, uniformly over x, and for j ∈ {0,+,−},

m̌j(x+ bN) ≤ mj(x) ≤ m̌j(x− bN). (C.135)

Further, noting ži is i.i.d. across i, we obtain from equation (13) of Liu and Shao (2014) that,

for all deterministic sequences (aN , a
′
N) satisfying NΦ(−aN)→∞ and ρNΦ(ζ − a′N)→∞,

sup
0≤z≤aN

∣∣∣∣ m̌0(z)

2NΦ(−z)
− 1

∣∣∣∣ = oP(1), sup
0≤z≤a′N

∣∣∣∣ 2m̌±(z)

ρNΦ(ζ − z) + ρNΦ(−ζ − z)
− 1

∣∣∣∣ = oP(1).

(C.136)

Using (E.15) and −Φ−1(N−1) h
√

logN , we note that, for bN = o
(
1/
√

logN
)
, Φ(−z ±

bN) = Φ(−z)(1 + o(1)) uniformly over |z| ≤ −Φ−1(N−1). Hence we obtain from (C.135)

and (C.136) that, for all deterministic sequences (aN , a
′
N) satisfying NΦ(−aN) → ∞ and

ρNΦ(ζ − a′N)→∞,
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sup
0≤z≤aN

∣∣∣∣ m0(z)

2NΦ(−z)
− 1

∣∣∣∣ = oP(1), sup
0≤z≤a′N

∣∣∣∣ 2m±(z)

ρNΦ(ζ − z) + ρNΦ(−ζ − z)
− 1

∣∣∣∣ = oP(1).

(C.137)

In addition, it follows from (E.15) and the second part of (E.1) that, uniformly over z ≥ 0,

ρΦ(ζ − z)

Φ(−z)
h h(z), with h(z) :=

z

1 + (z − ζ)+

e(z−a∗)ζ . (C.138)

Here a∗ is introduced in the statement of Lemma E1, so is ζ∗ which appears below. We now

establish that, for all fixed (x, x′) satisfying 0 < x′ < x ≤ 2, if sup0≤z≤cx h(z) & 1, then

inf
z≥cx′

h(z)→∞. (C.139)

Since h(z) . elog z+(z−a∗)ζ by definition, it holds that, if sup0≤z≤cx h(z) & 1, there exists

0 ≤ aN ≤ cx such that h(aN) & 1 and thereby

elog aN+(aN−a∗)ζ & 1.

Because a∗ζ − log aN & logN by the first part of (E.1), ζ∗ &
√

logN due to our assumption

on ρ, and aN = o(logN), we have ζ & a−1
N logN &

√
logN . For all z satisfying z − aN ≥

cx′ − cx &
√

logN , it holds that h(z) & h(aN)z−1e(z−aN )ζ → ∞ as ζ &
√

logN . We hence

establish (C.139).

We first suppose z∗ ≥ cd2 . From (C.138) and the definition of z∗ (B.1) we have h(z∗) h 1.

Then, since d2 < d3, it follows from (C.139) (by contradiction) that

sup
0≤z≤cd3

ρΦ(ζ − z)

Φ(−z)
→ 0. (C.140)

Using (C.140), and applying (C.137) and the monotonicity of mj(z) and Φ(−z) in z, it holds

that, for all (random) sequence z satisfying 0 ≤ z ≤ cd3 ,

m0(z) = 2NΦ(−z)(1 + oP(1)), m±(z) = oP(NΦ(−z)). (C.141)

Here we also use ρΦ(−ζ − z) ≤ Φ(−z). Comparing (C.141) with (C.134), we have that

P(z̆ ≤ cd3)→ 0. We hence have, with high probability,

µ2ρNΦ(ζ − z̆) ≤ µ2ρNΦ(ζ − cd3) ≤ µ2NΦ(−cd3) = oP(µ2Nd) = oP(1). (C.142)

Here the second inequality comes from (C.140), the first equality comes from d3 < d, and the

last equality comes from µ ≤ N−d. (The situation where z̆ does not exists is equivalent with
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z̆ being so large that supi |ẑi| < z̆ and is hence a special case.) Given (C.142), Lemma E7

applies and we obtain ŜBH
τ = S̃2(z̆) = oP(1).

On the other hand, we have

SBH
τ =

N1/2E(ψ̃2,i(z
∗)si)

E(ψ̃2,i(z
∗)2)1/2

≤
µN1/2E(|ψ̃2,i(z

∗)|1{αi 6=0,|ži|≥z∗})

σE(ψ̃2,i(z
∗)2)1/2

≤ µ

σ

√
NE(1{αi 6=0,|ži|≥z∗}) ≤

µ

σ

√
2ρNΦ(ζ − z∗) . µ

√
NΦ(−z∗) = o(1).

The second inequality comes from Cauchy-Schwarz inequality, the last inequality comes from

(B.1), and the last equality comes z∗ ≥ cd2 and NΦ(−cd2) = oP(Nd) as d2 < d. Hence we

prove ŜBH
τ − SBH

τ = oP(1) under z∗ ≥ cd2 .

Now suppose z∗ ≤ cd2 . Then it follows from (C.138), (B.1) and (C.139) that, as d1 < d2,

inf
z≥cd1

ρΦ(ζ − z)

Φ(−z)
→∞. (C.143)

Since d1 > 0, we have NΦ(−cd1)→∞. Given (C.143), we further have ρNΦ(ζ − cd1)→∞.

Applying (C.137), and using (C.143), it holds that

m0(cd1) = oP(ρΦ(ζ − cd1)), m±(cd1) = ρΦ(ζ − cd1)(1 + oP(1)). (C.144)

Let h̃(z) := 2NΦ(−z)/
∑

j∈{0,+,−}mj(z). From (C.144), we know that h(cd1) = oP(1). Since

h̃(0) = 1, we know that with high probability z̆ exists and satisfy 0 ≤ z̆ ≤ cd1 . Since Φ(−z)

is decreasing in z, we have NΦ(−z̆)→∞ and ρNΦ(ζ − z̆)→∞ in probability. Therefore,

we obtain from (C.137) that

m0(z̆) = 2NΦ(−z̆)(1 + oP(1)), m±(z̆) =
ρ

2
N(Φ(ζ − z̆) + Φ(−ζ − z̆))(1 + oP(1)). (C.145)

Since z̆′ ≤ z̆, (C.145) would still hold if all z̆ are replaced by z̆′. Hence, substituting (C.145)

back into (C.134), and noting Φ(−ζ − z) ≤ Φ(−z), we have

2(1− τ)Φ(−z̆)

τρΦ(ζ − z̆)
= 1 + oP(1). (C.146)

Next, using (B.1) and (E.15), we note that z∗ ≤ cd2 leads to that ζ &
√

logN (see a few lines

after (C.139)). As a result, using (E.15), and comparing (B.1) and (C.146), we have

|z̆ − z∗| = oP

(
1/
√

logN
)
. (C.147)
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We finally obtain

ŜBH
τ =

ŵ′q(T
−1/2z̆)ᵀMβα

σ‖Mβŵ′q(T
−1/2z̆)‖

= S2(z∗) + oP(SOPT + 1) = SBH
τ + oP(SOPT + 1).

where the first equality holds by definition, the second comes from (C.147), ρNΦ(ζ − z∗) ≥
ρNΦ(ζ − cd1)→∞ (see after (C.143)), and Lemma E6 (choose q = 2 and (λ′, λ) = (z̆, z∗))),

and the last holds by S2(z∗) = SBH
τ due to ψi = E(si|G) and that ψ̃q,i(z

∗) is G-measurable.

We hence prove ŜBH
τ − SBH

τ = oP(SOPT + 1) under z∗ ≤ cd2 .

Proof of Proposition B3, Part 2. In this part we prove that the sufficient and necessary con-

dition is correct. By definition it holds that

SBH
τ

SOPT
=
S2(z∗)

SOPT
=

E(ψ̃2,i(z
∗)ψi)

E(ψ̃2,i(z
∗)2)1/2E(ψ2

i )
1/2

= Corr(ψi, ψ̃2,i(z
∗)). (C.148)

The first equality holds by S2(z∗) = SBH
τ due to ψi = E(si|G) and that ψ̃q,i(z

∗) is G-

measurable. Since ρ → 0 by assumption, we know that z∗ → 0 does not hold as it con-

tradicts its definition (B.1). Moreover, we have that, using the first part of (E.1) and that

− log ρ h logN by assumption, ζ−a∗ ≥ −cN
√

logN and ζ−ζ∗ ≥ −cN
√

logN are equivalent.

Hence, according to (E.23) and (E.24) of Lemma E3 (choose q = 2), using (C.148) and the

subsequence argument, and recalling ζ =
√
Tµ/σ and ζ∗ =

√
−2 log ρ, we readily obtain the

“only if” part. Then we study the “if” part, according to (E.25), we only need to show that,

for all fixed ε > 0, there exists a fixed τ > 0 such that, for large N ,

Φ(−z∗)
ρΦ(ζ − a∗)

≤ ε. (C.149)

The rest of the proof is to show (C.149). Rewritting the definition of z∗, and noting τ is

fixed, we have
ρΦ(ζ − z∗)
2Φ(−z∗)

=
1− τ
τ

h 1. (C.150)

Using (E.15) and the second part of (E.1) (recall χ(a) and a∗ are introduced in the statement

of Lemma E1), noting χ(a) := ρ
2
φ(a− ζ)/φ(a), we obtain from (C.150) that

h(z∗) :=
z∗

1 + (z∗ − ζ)+

e(z∗−a∗)ζ h 1. (C.151)

Here we also introduce h(z∗) as short-hand notation. Suppose z∗ ≥ a∗ + 1. Then h(z∗) ≥
e(z∗−a∗)ζ →∞. Suppose a∗ ≤ z∗ ≤ a∗+1. Then h(z∗) ≥ 1+a∗

2+(a∗−ζ)+ →∞. Suppose z∗ ≤ a∗−1.
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Then h(z∗) ≤ a∗e−ζ → 0. Hence we conclude a∗ − 1 ≤ z∗ ≤ a∗ for large N . Therefore, it

follows from (C.151) that

e(a∗−z∗)ζ h
a∗

1 + (a∗ − ζ)+

. (C.152)

It then holds that, when ζ − ζ∗ ≥ −cN
√

logN ,

a∗ − z∗ .
1

ζ
log

a∗

1 + (a∗ − ζ)+

.
1

1 + (a∗ − ζ)+

1 + (a∗ − ζ)+

a∗
log

a∗

1 + (a∗ − ζ)+

≤ o

(
1

1 + (a∗ − ζ)+

)
. (C.153)

The first inequality follows from (C.152). The second inequality comes from a∗ h ζ due

to the first part of (E.1) and ζ∗ h
√

logN by the assumption on ρ. To obtain the last

inequality, we utilize that (a∗ − ζ)+ = o(a∗), again due to the first part of (E.1), and that

limx→∞ x
−1 log x = 0. We hence obtain

|Φ(ζ − z∗)− Φ(ζ − a∗)|
Φ(ζ − a∗)

. (a∗ − z∗) max
z∗≤a≤a∗

φ(a− ζ) = o

(
φ(a∗ − ζ)

1 + (a∗ − ζ)+

)
= o(Φ(ζ − a∗)).

(C.154)

The first inequality is obvious given that z∗ ≤ a∗ for large N . The first equality comes from

(C.153) and that supy:|y|.(1+|x|)−1 φ(x + y) . φ(x) uniformly over x. The last equality is a

result of (E.15). It follows from (C.154) that Φ(ζ − a∗) = Φ(ζ − z∗)(1 + o(1)). Combining

this result with (C.150), we further have 2Φ(−z∗)/(ρΦ(ζ − a∗)) = (1 + o(1))τ/(1 − τ). We

hence prove (C.149) and the proof concludes.

C.7.3 Proof of Proposition B4

By definition, we have w̆1,i(λ) = σ̂−1
i ψ1(ŝi, λ) = T−1/2σ̂−1

i ψ1(ẑi, T
1/2λ) = T−1/2w̃′1(T 1/2λ) and

ψ1(ši, λ) = T−1/2ψ̃1(T 1/2λ). Hence, it holds that

Ŝ1,λ =
w̆1(λ)ᵀMβα

σ‖Mβw̆1(λ)‖
= Ŝ ′1(T 1/2λ), SLasso

λ =
N1/2E(ψiψ1(ši, λ))√

E(ψ1(ši, λ)2)
= S1(T 1/2λ), (C.155)

where the first equality in the second part comes from ψi = E(si|G) and that ψ1(ši, λ) is

G-measurable.

Suppose λ satisfies ρNΦ(ζ − T 1/2λ)→∞. Then we have

Ŝ1,λ = Ŝ ′1(T 1/2λ) = S1(T 1/2λ) + oP(SOPT + 1) = SLasso
λ + oP(SOPT + 1). (C.156)

Here the first and last equality comes from (C.155) and the second equality comes from
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Lemma E6 as ρNΦ(ζ − T 1/2λ)→∞ (replace both λ′ and λ with T 1/2λ and choose q = 1).

Now suppose ρNΦ(ζ − T 1/2λ) . 1. It holds that

S1(T 1/2λ) =
N1/2E(ψ̃1,i(T

1/2λ)si)

E(ψ̃1,i(T
1/2λ)2)1/2

≤ µ

σ

√
NE(1{|ši|≥0,αi 6=0}) ≤

µ

σ

√
2ρNΦ(ζ − T 1/2λ) = o(1).

(C.157)

Here the first equality comes from ψi = E(si|G) and that ψ̃1,i(λ) is G-measurable. The first

inequality holds by |si| = µ
σ
1{αi 6=0} and Cauchy-Schwarz inequality. The second inequality is

obvious. The last equality comes from µ = o(1) by assumption. Since ρNΦ(ζ − T 1/2λ) . 1

leads to µ2ρNΦ(ζ−T 1/2λ)→ 0, Lemma E7 applies and hence Ŝ ′1(T 1/2λ) = oP(1). Combining

with (C.157), we obtain Ŝ ′1(T 1/2λ) = S1(T 1/2λ) + oP(1). Given (C.155), we obtain Ŝ1(λ) =

SLasso
λ + oP(1) under ρNΦ(ζ − T 1/2λ) . 1. Hence we establish Ŝ1(λ) = SLasso

λ + oP(1) with

the classic subsequence argument.

Finally, it holds that

SLasso
λ

SOPT
=
S1(T 1/2λ)

SOPT
=

E(ψ̃1,i(T
1/2λ)ψi)

E(ψ̃1,i(T
1/2λ)2)1/2E(ψ2

i )
1/2

= Corr(ψi, ψ̃1,i(T
1/2λ)), (C.158)

where the first equality comes from (C.155) and the second comes from the definition of S1

and SOPT = N1/2E(ψ2
i )

1/2. On the other hand, we have that, using the first part of (E.1) and

that − log ρ h logN by assumption, ζ − a∗ → ∞ and ζ − ζ∗ → ∞ are equivalent. Hence,

according to (E.23) and (E.24) of Lemma E3 (replace λ with T 1/2λ and choose q = 2), using

(C.158), and recalling ζ =
√
Tµ/σ and ζ∗ =

√
−2 log ρ, we obtain the remaining statements

of Proposition B4.

Appendix D Lemmas supporting Section C.4

Lemma D1. We define ūi = T−1
∑

s∈T ui,s. Suppose Assumptions 1 and 2 hold and that

‖β‖MAX .P 1 and λmin(βᵀβ) &P N . Also suppose logN . T . Nd with fixed d < 1. Then it

holds that, as N, T →∞,

max
1≤i≤N

|σ̂2
i − σ2

i | = OP

(√
(logN)/T

)
, (D.1)

max
1≤i≤N

|(Pβū)i| = OP

(
1/
√
TN

)
, (D.2)

max
1≤i≤N

|(Pβα)i| = OP(N−1/2E(s2
i )

1/2). (D.3)

Proof. We start with (D.1). First of all, we write
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max
1≤i≤N

|σ̂2
i − σ2

i | ≤ ‖Mβ(T−1uuᵀ − ūūᵀ)Mβ − Σu‖MAX

≤ ‖MβΣuMβ − Σu‖MAX + ‖Mβ(T−1uuᵀ − ūūᵀ − Σu)Mβ‖MAX. (D.4)

Now we establish the upper bounds of the two terms in the second line. We write

‖MβΣuMβ − Σu‖MAX ≤ ‖PβΣuPβ‖MAX + 2‖PβΣu‖MAX

≤ (N‖Pβ‖MAX + 2)‖Pβ‖MAX‖Σu‖MAX .P N
−1. (D.5)

The last inequality comes from ‖Pβ‖MAX ≤ C‖β‖2
MAX‖(βᵀβ)−1‖MAX .P N−1, which is true

by assumption. On the other hand, we have

‖Mβ(T−1uuᵀ − ūūᵀ − Σu)Mβ‖MAX

≤ ‖T−1uuᵀ − ūūᵀ − Σu‖MAX(1 + 2N‖Pβ‖MAX +N2‖Pβ‖MAX) .P

√
(logN)/T ,(D.6)

where the last inequality comes from the uniform bound on i.i.d. normal variables, logN . T

by assumption, and that λmax(Σu) .P 1 by condition (a) of Assumption 1. Substituting (D.5)

and (D.6) into (D.4), and noting N−1 ≤ C
√

(logN)/T by assumption, we obtain (D.1).

We obtain (D.2) by writing

max
1≤i≤N

|(Pβū)k| ≤ C‖β‖MAX‖(βᵀβ)−1‖MAX max
1≤k≤K

|(βᵀū)k| .P max
1≤k≤K

N−1|(βᵀū)k| .P 1/
√
TN.

Here the last inequality comes from that K is fixed, E(ūiūj|β,Σu) . δi,jσ
2
i T
−1 by conditions

(a) and (b) of Assumption 1, and λmax(Σu) .P 1.

Finally, we write

max
1≤i≤N

|(Pβα)i| ≤ C‖β‖MAX‖(βᵀβ)−1‖MAX max
1≤k≤K

|(βᵀα)k| ≤ CN−1 max
1≤k≤K

|(βᵀα)k|. (D.7)

On the other hand, from condition (a) and (b) of Assumption 1 and condition (a) of Assump-

tion 2, we have E(αiαj|β,Σu) = δi,jσ
2
i E(s2

i ). Therefore, as K is fixed and λmax(Σu) .P 1, we

have

max
1≤k≤K

|(βᵀα)k| .P cNN
1/2‖β‖MAX .P N

1/2E(s2
i )

1/2. (D.8)

Substituting (D.8) into (D.7), we obtain (D.3).

Lemma D2. Suppose Assumptions 1 and 2 hold and that ‖β‖2
MAX .P 1 and λmin(βᵀβ) &P N .

Also assume Nd . T . Nd′ with fixed d > 0 and d′ < 1. Then it holds that, as N, T →∞,

max
1≤i≤N

|ŝi − ši| .P cNT
−1/2k̃N . (D.9)
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If we additionally have T & Nd with fixed d > 1/2, then it holds that, as N, T →∞,

max
i∈B
|ŝi − ši| .P χN . (D.10)

Here χN :=
√

1/N(k5
N +E(s2

j)
1/2), and set B is B := {i ∈ N : T 1/2|ši| ≤ k̃N}, with k̃N := k−2

N .

Proof. By definition we have

ŝi − ši = −(Pβα)i
σ̂i

− (Pβū)i
σ̂i

+

(
σi
σ̂i
− 1

)
ši. (D.11)

Since T & Nd with d > 0 by assumption, (D.1) of Lemma D1 leads to max1≤i≤N |σ̂2
i − σ2

i | =
oP(1). Then, noting mini σi &P 1 by condition (d) of Assumption 1, we obtain mini σ̂i &P 1.

Applying (D.1) again, we have maxi

∣∣∣σiσ̂i
− 1
∣∣∣ .P

√
(logN)/T . Using these two results, and

substituting (D.2) and (D.3) of Lemma D1 into (D.11), we obtain

max
1≤i≤N

|ŝi− ši| .P χN +
√

(logN)/T max
1≤i≤N

|ši|, max
i∈B
|ŝi− ši| .P χN +

√
(logN)/T max

i∈B
|ši|.

(D.12)

Since P(|si| ≥ 1) ≤ E(s2
i1{|si|≥1}) ≤ cNN

−1 by condition (a) of Assumption 2, we have

P(maxi |si| ≥ 1) ≤ cN . Combining this result with maxi |ε̄i| .P

√
(logN)/T by the uniform

bound on i.i.d. normal variables, we obtain max1≤i≤N |ši| .P 1 (again noting T & Nd with

d > 0 by assumption). Then we have
√

(logN)/T max1≤i≤N |ši| .P T
−1/2
√

logN . Also, we

have χN ≤ cNT
−1/2 since T = o(N) by assumption and E(s2

j) . 1 + E(s2
i1{|si|≥1}) . 1 by

condition (a) of Assumption 2. Substituting the two bounds into the first part of (D.12), we

achieve (D.9).

On the other hand, the definition of set B leads to maxi∈B |ši| ≤ T−1/2k̃N . Then, noting

T & Nd with d > 1/2 by assumption, we have
√

(logN)/T maxi∈B |ši| .
√

1/Nk5
N ≤ χN .

Given the second part of (D.12), we obtain (D.10).

Lemma D3. Suppose Assumptions 1 and 2 hold and that ‖β‖2
MAX .P 1 and λmin(βᵀβ) &P N .

Nd . T . Nd′ with fixed d > 1/2 and d′ < 1. Then it holds that, as N, T →∞,

P(p(ši) ≥ T 1/2N−3/2,∀i ≤ N) ≥ 1− cN . (D.13)

Proof. Note that when |x| < 1, we can find C > 1 such that a ≥ C implies |a− x| ≥ C − 1.

Therefore, for |x| < 1, we have∫
|a|≥C

φ1/T (x− a)da ≤
∫
|a|≥C−1

√
T exp(−Ta2/2)da . exp(−T ) ≤ cNN

−1. (D.14)
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The last step comes from T & Nd for some d > 1/2 by assumption. Then we can bound∫
|a|≥C

p(a)da ≤
∫
|x|≥1

ps(x)dx+

∫
|x|<1

∫
|a|≥C

φ1/T (x− a)daps(x)dx

≤
∫
|x|≥1

ps(x)dx+ sup
x:|x|<1

∫
|a|≥C

φ1/T (x− a)da ≤ cNN
−1. (D.15)

Here the last inequality comes from (D.14) and
∫
|x|≥1

ps(x)dx ≤ E(s2
i1{|si|≥1}) ≤

E(s2
i1{|si|≥cN}) ≤ cNN

−1 by condition (a) of Assumption 2. It follows from (D.15) that

P(p(ši) < T 1/2N−3/2) =

∫
1{p(a)<T 1/2N−3/2}p(a)da

≤ cNN
−1 +

∫
|a|<C

1{p(a)<T 1/2N−3/2}p(a)da ≤ cNN
−1. (D.16)

The last inequality also uses T = o(N) by assumption. (D.16) proves the lemma by Bonferroni

inequalities.

Lemma D4. It holds that, for j ∈ {0, 1} and for all (a, ā) satisfying |ā − a| ≤ 1/
√

6 logN ,

as N →∞,

|ajφ(a)− ājφ(ā)| . (logN)(j+1)/2|ā− a|φ(a) + cNN
−2, (D.17)

φ(ā) . (logN)(j+1)/2(1 + |a|)−(j+1)(φ(a) + cNN
−2). (D.18)

Proof. We first write that, for all a and for j ∈ {0, 1},

|ajφ(a)− ājφ(ā)| ≤ |āj − aj|φ(a) + (|āj − aj|+ |a|j)|φ(ā)− φ(a)|

≤ |ā− a|φ(a) + (|ā− a|+ |a|j)φ(a)|e−(a2−ā2)/2 − 1|.

On the other hand, for all sequence bN satisfying bN ≥ 1, and for all (a, ā) satisfying |a| ≤ bN

and |ā−a| ≤ b−1
N , we have |e−(a2−ā2)/2−1| . |ā−a|bN . As a result, for all such bN and (a, ā),

it holds that, for j ∈ {0, 1},

|ajφ(a)− ājφ(ā)| . bj+1
N |ā− a|φ(a). (D.19)

Moreover, it holds that, for j ∈ {0, 1, 2} and for all b′N that satisfies b′N ≥
√

5 logN ,

sup
a:|a|≥b′N

|ajφ(a)| ≤ cNN
−2. (D.20)

Then, choosing bN =
√

6 logN , which ensures bN ≥
√

5 logN and bN − b−1
N ≥

√
5 logN for
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large N , we obtain (D.17) by combining (D.19) and (D.20). Further, (D.18) would directly

come from (D.17) by choosing j = 0 when |a| ≤
√

6 logN , which guarantees (logN)(1 +

|a|)−2 & 1. For |a| ≥
√

6 logN , we obtain (D.18) from (D.20) by choosing j = 2, because in

this case we have |ā| ≥
√

5 logN for large N , and 1 + |a| ∼ 1 + |ā|. The proof ends.

Appendix E Lemmas supporting Section C.7

Lemma E1. Suppose that rt follows (1), Assumption 1 holds, ui,t h N (0, σ2), and α following

(5) as in Example 1. Also assume N−d
′ ≤ ρ ≤ N−d with fixed d′ > d > 0. Recall we

define p(a) and ψ(a) in Corollary 2 and Φ(x) is the standard normal cumulative distribution

function. Then it holds that (i) when ζ − ζ∗ . −
√

logN ,∫
ψ(a)2p(a)da h (1 ∧ ζ2)µ2ριΦ(a∗ − 2ζ);

(ii) when ζ − ζ∗ ≥ −cN
√

logN ,∫
ψ(a)2p(a)da h µ2ρΦ(ζ − a∗).

Here ι := e3ζ2/2−ζa∗, ζ∗ and χ(a) are defined by ζ∗ :=
√
−2 log(ρ/2) and χ(a) := ρ

2
φ(a −

ζ)/φ(a), and a∗ is the solution of χ(a) = 1.

Proof. It follows from definition that

a∗ =
ζ

2
+
ζ∗2

2ζ
and χ(a) = exp((a− a∗)ζ). (E.1)

By definition we have

T−1/2p(T−1/2a) = (1− ρ)φ(a) +
ρ

2
φ(|a| − ζ) +

ρ

2
φ(|a|+ ζ).

Because φ(|a|+ ζ) ≤ φ(a) and ρ→ 0 we have, uniformly over a ≥ 0,

T−1/2p(T−1/2a) = (1 + o(1))
ρ

2
φ(a− ζ)(1 + χ(a)−1). (E.2)

We also note φ(a+ ζ) = exp(−2aζ)φ(a− ζ). Therefore, uniformly over a ≥ 0,

ψ(T−1/2a) = (1 + o(1))µ
1− exp(−2aζ)

1 + χ(a)−1
. (E.3)

As a result of (E.2) and (E.3), it holds that
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∫
ψ(a)2p(a)da = (1 + o(1))µ2ρB∗, with B∗ :=

∫ ∞
0

(1− exp(−2aζ))2 χ(a)

1 + χ(a)
φ(a− ζ)da.

(E.4)

Then the goal becomes characterization of B∗ across different cases. For this purpose, we

introduce two set sequences A1 = (0, a∗) and A2 = (a∗,∞). Based on these sets, we define,

for j ∈ {1, 2},

Bj =

∫
Aj

(1−exp(−2aζ))2 χ(a)

1 + χ(a)
φ(a−ζ)da, B′j :=

∫
Aj

(1−exp(−2aζ))2φ(a−2ζ)da. (E.5)

It apparently holds that B∗ = B1 + B2. Furthermore, from the first part of (E.1), we note

ζa∗ → ∞ and thereby supa≥a∗ exp(−2aζ) → 0. From the second part of (E.1), χ(a) ≤ 1 for

all a ≤ a∗ and χ(a) ≥ 1 for all a ≥ a∗. Hence, it follows from (E.5) that

B1 h
∫ a

0

(1− exp(−2aζ))2χ(a)φ(a− ζ)da, B2 h
∫ ∞
a∗

φ(a− ζ)da. (E.6)

We note χ(a)φ(a − ζ) = ιφ(a − 2ζ). Applying this relation to the two parts of (E.6), we

obtain, respectively,

B1 h ιB′1, B2 . ιB′2. (E.7)

where, for the second result, we use that infa≥a∗(1 − exp(−2aζ))2χ(a) & 1 due to

infa≥a∗ χ(a) ≥ 1 and infa≥a∗ aζ →∞ by the first part of (E.1).

Now we gauge the magnitude of B1 and B2 for cases (i) and (ii). We further separate case

(i) into two subcases: case (ia) where ζ . 1 (under which ζ − ζ∗ . −
√

logN always holds,

as ζ∗ &
√

logN by the assumption ρ ≤ N−d with fixed d > 0), and case (ib) where ζ → ∞
and ζ − ζ∗ . −

√
logN . We start with case (ia) where ζ . 1. We note

φ(a− 2ζ) exp(−2aζ) = φ(a) exp(−2ζ2), φ(a− 2ζ) exp(−4aζ) = φ(a+ 2ζ). (E.8)

Using (E.8), we obtain

B′1 +B′2 =

∫
(1− exp(−2aζ))2φ(a− 2ζ)da = 1− exp(−2ζ2). (E.9)

Moreover, it apparently holds

B′2 ≤
∫
A2

φ(a− 2ζ)da = Φ(2ζ − a∗). (E.10)

On the other hand, when ζ . 1, we have a∗ − 2ζ ≥ ζ∗2/(3ζ) for N sufficiently large. Then,

when ζ . 1
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ζ−2Φ(2ζ − a∗) . 1

ζ∗4
ζ∗2

ζ
exp(−ζ∗4/(18ζ2))→ 0. (E.11)

where the last convergence comes from ζ∗ → ∞ (by the assumption ρ ≤ N−d with fixed

d > 0), ζ∗2/ζ →∞ (as ζ . 1), and limx→∞ x exp(−x2) = 0. Since 1− exp(−2ζ2) h ζ2 under

ζ . 1, combining (E.9), (E.10), and (E.11), we obtain that, when ζ . 1,

B′1 h ζ2, B′2 = o(ζ2). (E.12)

Substituting (E.12) into (E.7), we obtain (recall B∗ = B1 +B2) that, when ζ . 1,

B∗ h ζ2e−ζa
∗
. (E.13)

(E.4) and (E.13) together lead to
∫
ψ(a)2p(a)da h µ2ζ2ρe−ζa

∗
. Given ι h e−ζa

∗
and Φ(a∗ −

2ζ) h 1 (by the first part of (E.1)) when ζ . 1, we prove the lemma for case (ia).

Next, we study cases (ib) and (ii). We note in both cases we have ζ → ∞. Using (E.8)

and Φ(x) = 1− Φ(−x), we obtain by direct calculation

B′1 =

∫ a∗

0

φ(a−2ζ)da = Φ(a∗−2ζ)−2Φ(−2ζ)+Φ(−a∗−2ζ)−exp(−2ζ2)(2Φ(a∗)−1). (E.14)

We note that, uniformly over x,

Φ(−x) h
1

1 + x+

φ(x+), (E.15)

where x+ = max{x, 0}. Using (E.15), we obtain Φ(a∗ − 2ζ) ≥ Φ(−3ζ/2) h 1
1+ζ

φ(3ζ/2) h
1

1+ζ
exp(−9ζ2/8). Then we have, Φ(−2ζ) = o(Φ(a∗ − 2ζ)) and exp(−2ζ2) = o(Φ(a∗ − 2ζ))

when ζ →∞. Since Φ(−a∗ − 2ζ) ≤ Φ(−2ζ) and 0 ≤ Φ(a∗) ≤ 1, we obtain from (E.14) that,

when ζ →∞,

B′1 = (1 + o(1))Φ(a∗ − 2ζ). (E.16)

Substituting (E.16) into the first part of (E.7), and noting the second part of (E.6), we obtain

that, when ζ →∞,

B1 h ιΦ(a∗ − 2ζ), B2 h Φ(ζ − a∗). (E.17)

We first investigate case (ib), in which it holds that a∗ − ζ &
√

logN according to the first

part of (E.1) and ζ∗ h
√

logN by the assumption on ρ. Then from (E.17) and (E.15), it

follows that, in case (ib),

B1 &
1

1 + (2ζ − a∗)+

φ(a∗ − ζ), B2 h
1

1 + (a∗ − ζ)+

φ(a∗ − ζ). (E.18)
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Here the first part comes from φ(x+) ≥ φ(x) for all x, and φ(2ζ − a∗)e3ζ2/2−ζa∗ = φ(a∗ − ζ).

The second part comes from a∗− ζ &
√

logN . Since 1 + (2ζ − a∗)+ . (a∗− ζ)+ according to

the first part of (E.1) and ζ∗ h
√

logN by the assumption on ρ, we obtain from (E.18) that,

in case (ib),

B2 . B1. (E.19)

Now we study case (ii), in which it holds that a∗ − ζ ≤ cN
√

logN by the first part of (E.1)

and ζ∗ h
√

logN . Hence, we have 2ζ − a∗ & 1. Therefore, from (E.17) and (E.15), it follows

that, in case (ii),

B1 h
1

1 + (2ζ − a∗)+

φ(a∗ − ζ), B2 &
1

1 + (a∗ − ζ)+

φ(a∗ − ζ). (E.20)

Here the first part comes from 2ζ − a∗ & 1 and φ(2ζ − a∗)e3ζ2/2−ζa∗ = φ(a∗ − ζ). The second

part comes from φ(x+) ≥ φ(x) for all x. Since 1 + (a∗− ζ)+ = o((2ζ − a∗)+), we obtain from

(E.20) that, in case (ii),

B1 = o(B2). (E.21)

Combining (E.19) and (E.21) with (E.17), we prove the lemma for cases (ib) and (ii). The

proof concludes.

Lemma E2. Suppose a real-valued function sequence hN : R → R, a sequnce aN , and a

positive sequence ∆N satisfy ∆
−1/2
N (1AN

− hN) → 0 in L2 with AN := (aN , aN + ∆N). Then

there exists a set sequence ĀN such that∫
AN−ĀN

da = o(∆N) and sup
a∈A′N

|hN(a)− 1| = o(1).

Proof. We define h∗N(a) = hN(a∆−1
N ) and A∗N = (aN∆−1

N , aN∆−1
N + 1). Then clearly (1A∗N −

h∗N) → 0 in L2. This further leads to h∗N → 1A∗N
in measure (see, e.g., Theorem 2.15.a of

Folland (2009)), i.e., for every ε > 0,
∫
A∗N

1{|1−h∗N (a)|≥ε}da→ 0. This is equivalent to that, for

every ε > 0,

∆−1
N

∫
AN

1{|1−hN (a)|≥ε}da→ 0. (E.22)

We hence prove the lemma.

Lemma E3. Suppose the same assumptions as in Lemma E1 and let a∗ be as defined therein.

Then there exists a deterministic sequence λ ≥ 0 such that Corr(ψi, ψ̃q,i(λ))→ 1 if and only

if, for some cN → 0,
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{
(µ, ρ) ∈

{
(µ, ρ) : ζ ≤ cNor ζ − a∗ ≥ c−1

N

}
for q = 1,

(µ, ρ) ∈
{

(µ, ρ) : ζ ≤ cNor ζ − a∗ ≥ −cN
√

logN
}

for q = 2.
(E.23)

Moreover, if sequence λ ≥ 0 is determnistic, Corr(ψi, ψ̃q,i(λ))→ 1 if and only if{
λ→ 0, when ζ → 0and q ∈ {1, 2},
ζ − λ→∞and φ(λ)

ρ(1+λ2)(ζ−λ)2
→ 0, when ζ − a∗ →∞and q = 1.

(E.24)

Further, when ζ − a∗ ≥ −cN
√

logN , it holds that

Corr(ψi, ψ̃q,i(λ)) ≥ 1 + o(1) +O

(
Φ(−λ)

ρΦ(ζ − a∗)

)
. (E.25)

Proof. Step 1. As a result of (E.2) and (E.3), it holds that, by the symmetry of ψ(a), ψ̃q(a, λ),

and p(a), ∫
ψ(a)2p(a)da = (1 + o(1))µ2ρ

∫ ∞
0

(1− exp(−2aζ))2 χ(a)

1 + χ(a)
φ(a− ζ)da,(E.26)∫

ψ̃q(a, λ)2p(a)da = (1 + o(1))ρ

∫ ∞
0

ψ̃q(a, λ)2 1 + χ(a)

χ(a)
φ(a− ζ)da, (E.27)∫

ψ(a)ψ̃q(a, λ)p(a)da = (1 + o(1))µρ

∫ ∞
0

ψ̃q(a, λ)(1− exp(−2aζ))φ(a− ζ)da. (E.28)

To facilitate the exposition, we introduce short-hand notation

f(a) :=

√
χ(a)

1 + χ(a)
φ(a− ζ)1{a≥0}, g(a) = (1− e−2aζ)f(a), g̃q(a) = ψ̃q(a, λ)

1 + χ(a)

χ(a)
f(a).

Comparing the definitions of f and g with the right-hand sides of (E.26), (E.27), and (E.28),

we obtain, for q ∈ {1, 2},

Corr(ψi, ψ̃q,i(λ)) = (1 + o(1))θq(λ), θq(λ) :=
〈g, g̃q〉
‖g‖‖g̃q‖

, (E.29)

where 〈g, g̃q〉 :=
∫
g(a)g̃q(a)da and ‖g‖ :=

√
〈g, g〉 stand for the L2-inner product and L2-

norm. Moreover, we note that 1 − θq(λ) = 1
2

1
‖g‖2

∣∣∣g − ‖g‖
‖g̃q‖ × g̃q

∣∣∣2. Let d∗ be the scalar that

minimizes ‖g − d× g̃q‖. It obviously holds that, for q ∈ {1, 2},

1− θq(λ) ≥ 1

2‖g‖2
‖g − d∗ × g̃q‖2. (E.30)
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Moreover, we have that, if θq(λ) ≥ 0 and for q ∈ {1, 2},

1− θq(λ) ≤ 1− θq(λ)2 =
1

‖g‖2
‖g − d∗ × g̃q‖2. (E.31)

Given (E.29), (E.30), and (E.31), the proof will focus on evaluating ‖g−d∗× g̃q‖. In addition,

given the definition of ψ̃(a, λ), we can write, for q ∈ {1, 2},

‖g − d∗ × g̃q‖ =

∫
(1− e−2aζ − d∗ × hq(a))2f(a)2da, with hq(a) = (e(a∗−a)ζ + 1)ψ̃q(a, λ).

(E.32)

Further, to characterize the magnitude of ‖g‖, we consider, resepectively, case (ia) where

ζ → 0 (under which ζ − ζ∗ . −
√

logN always holds, as ζ∗ &
√

logN by the assumption

ρ ≤ N−d with fixed d > 0), case (ib) where ζ & 1 and ζ − ζ∗ . −
√

logN , and case (ii) where

ζ − ζ∗ ≥ −cN
√

logN . Here and below we adopt the notation introduced in the statement of

Lemma E1. Since B∗ is simply ‖g‖2 here, it follows from Lemma E1 that

‖g‖2 h

{
(1 ∧ ζ2)ιΦ(a∗ − 2ζ), cases (ia) and (ib);

Φ(ζ − a∗), case (ii).
(E.33)

By the classic subsequence argument, we can establish the lemma as long as we prove it under

each of cases (ia), (ib), and (ii).

Step 2. We start with demonstrating that, for each q ∈ {0, 1}, θq(λ) → 1 holds in case

(ia) if and only if we choose λ → 0. Suppose λ → 0 and let d̄∗ = 2ζe−a
∗ζ . We obtain that,

for each q ∈ {1, 2} and for all a ≥ 0,

|1− e−2aζ − d̄∗ × hq(a)| = |1− e−2aζ − 2ζψq(a, λ)(e−aζ + e−a
∗ζ)|

≤ |1− e−2aζ − 2ζa|+ 2ζλ+ 2ζa(|1− e−aζ |+ e−a
∗ζ)

≤ 4ζ2a2 + 2ζλ+ 2e−a
∗ζζa. (E.34)

The second inequality comes from that |ψq(a, λ)| ≤ a and |ψq(a, λ) − a| ≤ λ for all a ≥ 0.

The last inequality comes from that −1
2
x2 ≤ 1 − e−x − x ≤ 0 and 0 ≤ 1 − e−x ≤ x for all

x ≥ 0. As a result, we have, for each q ∈ {1, 2},

‖g − d∗ × g̃q‖2 ≤ ‖g − d̄∗ × g̃q‖2 . ι

∫ ∞
0

(ζ4a4 + ζ2λ2 + e−2a∗ζζ2a2)φ(a− 2ζ)da

. ι(ζ4 + ζ2λ2 + e−2a∗ζζ2) = o(ιζ2). (E.35)

Here the first inequality holds by the definition of d∗. The second inequality comes from

(E.32), (E.34), and f(a)2 ≤ χ(a)φ(a− ζ) = ιφ(a− 2ζ). The third inequality comes from that
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∫
ajφ(a − 2ζ)da =

∫
(a + 2ζ)jφ(a)da .

∫
(aj + ζj)φ(a)da . 1 for j ∈ {2, 4} as ζ → 0. The

last inequality comes from ζ → 0, a∗ζ →∞, and λ→ 0.

Now suppose λ & 1. Then it holds that, for each q ∈ {1, 2},

‖g − d∗ × g̃q‖2 ≥
∫ λ∧1

0

(1− e−2aζ)2f(a)2da & ιζ2

∫ λ∧1

0

a2φ(a− 2ζ) & ιζ2. (E.36)

The first inequality comes from g̃q(a) = 0 for all a ∈ (0, λ). The second inequality comes from

infa≤1 f(a)2 ≥ 1
2
χ(a)φ(a − ζ). According to (E.33), we have ‖g‖2 h ιζ2 as Φ(a∗ − 2ζ) h 1

(by the first part of (E.1)) when ζ → 0. Given (E.29), we prove that for each q ∈ {1, 2},
Corr(ψi, ψ̃q,i(λ))→ 1 if (by (E.31) and (E.35)) and only if (by (E.30) and (E.36)) λ→ 0 when

we are in case (ia), i.e., when we have ζ → 0. We hence establish the first part of (E.24).

Step 3. Next, we show that, for each q ∈ {1, 2}, θq(λ)→ 1 does not hold for any λ sequence

in case (ib). Note that we always have ζ & 1 and ζ−a∗ . 1 in case (ib), due to ζ−a∗ ≤ ζ−ζ∗

by the first part of (E.1). We introduce a set sequence A := ((2ζ) ∧ a∗ − 4∆, (2ζ) ∧ a∗), with

∆ := 1
1+(2ζ−a∗)+ ∧ (ζ/2). Because φ(x)′ = −xφ(x), it holds that, for any real sequence x and

any fixed positive constant C,

φ(x) . inf
a:|a−x|≤ C

1+|x|

φ(a) ≤ sup
a:|a−x|≤ C

1+|x|

φ(a) . φ(x). (E.37)

As a result, we have infa∈A f(a)2 & ιφ((2ζ) ∧ a∗ − 2ζ) (by (E.37), the relation right after

(E.6), the definition of f , and A ⊂ (0,∞)), we have from (E.32) that, for q ∈ {1, 2},

‖g − d∗ × g̃q‖2 & ιφ((2ζ) ∧ a∗ − 2ζ)

∫
A

(1− e−2aζ − d∗ × hq(a))2da. (E.38)

According to (E.33) and (E.15), ‖g‖2 h ιφ((2ζ) ∧ a∗ − 2ζ)∆ in case (ib). Then, combining

(E.30) and (E.38), we obtain that, if θ(λ)→ 1, then, for q ∈ {1, 2},∫
A

(1− e−2aζ − d∗ × hq(a))2da = o(∆). (E.39)

It follows from Lemma E2 and (E.39) that, for each q ∈ {1, 2}, if θq(λ) → 1, there exists a

set sequence Ā such that,∫
A−Ā

da = o(∆) and sup
a∈Ā
|d∗ × hq(a)− (1− e−2aζ)| = o(1). (E.40)

It is almost obvious that (E.40) can not hold for any q ∈ {1, 2} and for any λ, given the

drastic difference between the definition of hq(a) and 1 − e−2aζ . To see this more clearly,
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we first consider the situation where ζ h 1. We note that, under ζ h 1 and uniformly over

a ∈ A (which becomes (2ζ − 4∆, 2ζ) for large N), hq(a) = (1 + o(1))ea
∗ζψ̃q(a, λ). Apply

the triangular inequality to (E.40) leads to supa∈Ā |d∗ea
∗ζ × ψ̃q(a, λ) − (1 − e−2aζ)| = o(1),

which can not hold for any q ∈ {1, 2} and for any λ sequence, because of the nonlinearity of

1− e−2aζ in a as ζ h 1.

Then we consider the situation where ζ →∞. It is trivial from (E.39) and that ψ̃q(a, λ) =

0 for a ≤ λ that λ ≤ (2ζ) ∧ a∗ − 7∆/2 for large N if θq(λ) → 1, for each q ∈ {1, 2}. As a

direct result, we have, by the definition of hq(a), that, for each q ∈ {1, 2}, if θq(λ) → 1 and

ζ →∞,
infa∈A+ hq(a)

supa∈A− hq(a)
& exp(ζ∆)→∞, (E.41)

where A+ := ((2ζ) ∧ a∗ − 3∆, (2ζ) ∧ a∗ − 2∆) and A− := ((2ζ) ∧ a∗ −∆, (2ζ) ∧ a∗). (E.41)

and (E.40) clearly contradict as, for large N , any Ā satisfying the first part of (E.40) would

overlap with both A+ and A−, and hence would violate the second part of (E.40) according to

(E.41). In other words, θq(λ)→ 1 does not hold under any λ sequence and for any q ∈ {1, 2}
if we are in case (ib).

Step 4. Now we demonstrate that, for each q ∈ {1, 2}, θq(λ) → 1 does not hold for

any λ sequence if we are in case (ii) and ∆−1(a∗ − λ) → ∞. We introduce a set sequences

A∗ := (a∗∨ζ+∆, a∗∨ζ+2∆) with ∆ := 1
1+(a∗−ζ)+ . We note that infa∈A φ(a−ζ) & φ((a∗−ζ)+)

by (E.37). Then, from (E.32) it follows that, for q ∈ {1, 2},

‖g − d∗ × g̃q‖2 & φ((a∗ − ζ)+)

∫
A∗

(1− e−2aζ − d∗ × hq(a))2da. (E.42)

According to (E.33) and (E.15), ‖g‖2 h φ((a∗ − ζ)+)∆. Then, combining (E.30) and (E.42),

we obtain that, for q ∈ {1, 2}, if θq(λ)→ 1,∫
A∗

(1− e−2aζ − d∗ × h1(a))2da = o(∆). (E.43)

Moreover, it follows from Lemma E2 and (E.43) that, for q ∈ {1, 2}, if θq(λ)→ 1, there exists

a set sequence Ā such that∫
A∗−Ā

da = o(∆) and sup
a∈Ā
|d∗ × hq(a)− 1| = o(1). (E.44)

Here we also use e−a
∗ζ → 0 (by the first part of (E.1) and ζ∗ h

√
logN → ∞ due to the

assumption on ρ). Now we prove by contradiction that, for each q ∈ {1, 2}, θq(λ)→ 1 can not

hold if ∆−1(a∗−λ)→∞. For this purpose, we introduce a set sequence A′ := (a∗−2∆, a∗−∆).
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Suppose ∆−1(a∗ − λ) → ∞ holds. Then we obtain that, for q ∈ {1, 2}, if θq(λ) → 1 and for

all a ∈ A∗ and a′ ∈ A′,

hq(a
′) = (1 + o(1))

exp((a∗ − a′)ζ) + 1

exp((a∗ − a)ζ) + 1
× hq(a) = (1 + o(1))χ(a′)−1 × hq(a). (E.45)

The first equality comes from ∆−1(a∗ − λ) → ∞ and the definition of ψ̃q. The last equality

comes from the definitions of A∗ and A′ and that exp(ζ∆)→∞, which in turn is a result of

that in case (ii) we have (a) ζ ≥ ζ∗ − cN
√

logN &
√

logN and (b) ∆−1 . cN
√

logN due to

a∗ − ζ h ζ∗ − ζ ≥ −cN
√

logN . Combining the second part of (E.44) and (E.45), we obtain

that, for q ∈ {1, 2}, if θq(λ)→ 1 and for all a ∈ A′,

d∗ × hq(a) = (1 + o(1))χ(a)−1. (E.46)

Since infa∈A′ χ(a)−1 →∞ due to exp(ζ∆)→∞, it follows from (E.46) that, for q ∈ {1, 2},

‖g − d∗ × g̃q‖2 ≥
∫
A′

(1− e−2aζ − d∗ × hq(a))2f(a)2da

&
∫
A′
χ(a)−1φ(a− ζ)da & ∆ inf

a∈A′
φ(a− ζ) & ‖g‖2,

where we note that infa∈A′ χ(a)−1 →∞ ( by χ(a∗) = 1 and exp(ζ∆)→∞) and infa∈A′ φ(a−
ζ) & φ((a∗ − ζ)+), and we recall ‖g‖2 h φ((a∗ − ζ)+)∆. This contradicts (E.30) and proves

that, for q ∈ {1, 2}, θq(λ)→ 1 can not hold if we are in case (ii) and ∆−1(a∗ − λ)→∞.

Step 5. This step completes the proof regarding condition (E.23) for q = 1, and prove the

second part of (E.24). Given (E.29) and the privious analysis for cases (ia) and (ib), to show

condition (E.23) for q = 1 we only need to demonstrate that, in case (ii), there exists some

sequence λ such that θ1(λ)→ 1 if and only if ζ − a∗ →∞.

We first show the “only if”. By definition of A∗ (see above (E.42)), it holds that

supa∈A∗ exp((a∗ − a)ζ) ≤ exp(−ζ∆) → 0. Substituting this result into the definition of

h1 given in (E.32) and that ψ1(a, λ) = (a− λ)+ for a ≥ 0, we obtain from the second part of

(E.44) that supa∈Ā(a − λ)+ = (1 + o(1)) infa∈Ā(a − λ)+. This results, given the first part of

(E.44) and the definition of A∗, translates into (a∗∨ζ+2∆−λ)+ = (1+o(1))(a∗∨ζ+∆−λ)+.

Also, it is trivial from (E.43) that λ ≤ a∗ ∨ ζ + 3∆/2 for large N . Therefore, we have that,

if θ1(λ)→ 1,

∆−1(a∗ ∨ ζ − λ)→∞. (E.47)

However, according to Step 4 and the subsequence argument, θ1(λ)→ 1 also leads to ∆−1(a∗−
λ) . 1. This bound and (E.47) can simultaneously hold only if ζ − a∗ →∞.
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Now we show the “if” part. We note

‖f − g‖2 ≤
∫ ∞

0

e−2aζφ(a− ζ)da = Φ(−ζ)→ 0, (E.48)

where the first inequality comes from f(a)2 ≤ φ(a− ζ). Moreover, letting d̄∗ = (ζ − λ)−1, we

obtain

‖f − d̄∗ × g̃1‖2

=

∫ λ

0

f(a)2da+

∫ ∞
λ

(
1− (e(a∗−a)ζ + 1)× a− λ

ζ − λ

)2

f(a)2da

≤
∫ λ

0

f(a)2da+ 2

∫ ∞
λ

(
ζ − a
ζ − λ

)2

f(a)2da+ 2

∫ ∞
λ

e2(a∗−a)ζ

(
a− λ
ζ − λ

)2

f(a)2da

≤ Φ(λ− ζ) +
2

(ζ − a∗)2
+

4

(ζ − λ)2ρ

∫ ∞
λ

φ(a)(a− λ)2da. (E.49)

Here the equality comes from (E.32) and the first inequality is obvious. For the second

inequality we use f(a)2 ≤ φ(a− ζ),
∫

(x− ζ)2φ(x− ζ) = 1, and e2(a∗−a)ζf(a)2 ≤ χ(a)−1φ(a−
ζ) = 2

ρ
φ(a). We also note Φ(λ − ζ) → 0 if λ ≤ a∗, as ζ − a∗ → ∞. Hence, given (E.49),

and noting
∫∞
λ
φ(a)(a− λ)2da h 1

1+λ2
φ(λ), we have that ‖f − d̄∗ × g̃1‖ → 0, when λ satisfies

the second part of (E.24). (Such λ always exists, because λ = a∗ satisfy the condition as

ζ − a∗ → ∞ and ρ−1φ(a∗) = φ(a∗ − ζ)/2 → 0.) Given (E.48), and noting ‖g‖2 h 1 from

(E.33) (note ζ − a∗ → ∞ can only occur in case (ii) by the first part of (E.1)), we obtain

‖g− d̄∗ × g̃1‖ = o(‖g‖). Since ‖g− d∗ × g̃1‖ ≤ ‖g− d̄∗ × g̃1‖ by definition of d∗, the “if” part

follows from (E.31). We hence establish condition (E.23) for q = 1.

Now we prove the second part of (E.24). The paragraph after (E.49) already proves the

“if” part of the second part of (E.24).

We now demonstrate the “only if” part. When ζ − λ . 1, it holds that, for all d,

‖f − d× g̃1‖2 ≥
∫ λ

a∗
f(a)2da ≥ 1

2
(Φ(λ− ζ)− Φ(a∗ − ζ)) & 1. (E.50)

The first inequality comes from λ ≥ a∗ as ζ − a∗ → ∞, the second inequality comes from

that f(a)2 ≥ 1
2
φ(a − ζ) for all a ≥ a∗, and the last inequality comes from ζ − λ . 1 and

ζ − a∗ → ∞. Combining (E.48) and (E.50), and recalling (E.31) and that ‖g‖2 h 1 from

(E.33) under ζ − a∗ →∞, we obtain that the condition ζ − λ→∞ is necessary.

Now suppose ζ−λ→∞ holds but ρ−1φ(λ) & (1 +λ2)(ζ−λ)2. This indicates ρ−1φ(λ)→
∞. Since ρ−1φ(a∗)→ 0 (see after (E.49)), we have (a∗− λ)/(1 + λ)→∞. Therefore, letting

l(a) = 1{λ≤a≤a∗}, we have, for all d,

53



‖g̃1× l‖2 =

∫ a∗

λ

(e(a∗−a)ζ +1)2(a−λ)2f(a)2da ≥ 2

ρ

∫ a∗

λ

(a−λ)2φ(a)da &
φ(λ)

ρ(1 + λ2)
& (ζ−λ)2.

(E.51)

The second inequality comes from (e(a∗−a)ζ + 1)2f(a)2 = (1 + χ(a)−1)φ(a − ζ) and χ(a) =
ρ
2
φ(a − ζ)/φ(a) by definition. The third inequality comes from (a∗ − λ)/(1 + λ) → ∞. The

last inequality comes from ρ−1φ(λ) & (1 + λ2)(ζ − λ)2 that we suppose. Since ‖f × l‖2 =∫ a∗
λ
f(a)2da ≤ Φ(a∗ − ζ)→ 0, given (E.48) and (E.51), we obtain that, for all d,

‖g − d× g̃1‖ = ‖f − d× g̃1‖+ o(1) ≥ ‖(f − d× g̃1)× l‖+ o(1) & d× (ζ − λ) + o(1). (E.52)

Given (E.52), and recalling ‖g‖2 h 1 from (E.33), ‖g − d × g̃1‖ = o(1) can hold only if

d = o((ζ − λ)−1). However, for all d ≤ 1
4
(ζ − λ)−1, it holds that

‖f−d× g̃1‖2 ≥
∫ ζ

a∗
(1−d×(e(a∗−a)ζ+1)(a−λ))2f(a)2da ≥ 1

4

∫ ζ

a∗
f(a)2da &

1

2
−Φ(a∗−ζ) & 1.

(E.53)

The second inequality comes from that e(a∗−a)ζ + 1 ≤ 2 and a− λ ≤ ζ − λ for all a ∈ (a∗, ζ),

the third inequality comes from that f(a)2 ≥ 1
2
φ(a− ζ) for all a ≥ a∗, and the last inequality

comes from ζ − a∗ → ∞. Given (E.48), (E.53) contradicts ‖g − d × g̃1‖ = o(1). Therefore,

recalling (E.31), we conclude that ρ−1φ(λ) = o((1 + λ2)(ζ − λ)2) is indeed necessary. The

second part of (E.24) has been proved.

Step 6. In this step we finish the proof regarding condition (E.23) for q = 2. Given (E.29)

and the privious analysis for cases (ia) and (ib), we only need to show that, in case (ii),

θ2(λ)→ 1 for some sequence λ. Under λ = a∗ and d̄∗ = ζ−1, we obtain

‖f − d̄∗ × g̃2‖2 =

∫ a∗

0

f(a)2da+

∫ ∞
a∗

(
1− (e(a∗−a)ζ + 1)× a

ζ

)2

f(a)2da

≤
∫ a∗

0

f(a)2da+ 2

∫ ∞
a∗

(
a− ζ
ζ

)2

f(a)2da+ 2

∫ ∞
a∗

e2(a∗−a)ζ a
2

ζ2
f(a)2da

≤ ιΦ(2ζ − a∗) +
2

ζ2

∫ ∞
a∗−ζ

a2φ(a)da+
2

ζ2
e2a∗ζ

∫ ∞
a∗

(a+ ζ)2φ(a+ ζ)da

. ιΦ(2ζ − a∗) +
2

ζ2
(1 + (a∗ − ζ)+)2Φ(ζ − a∗)

+
2

ζ2
(1 + (a∗ + ζ))2e2a∗ζΦ(−a∗ − ζ). (E.54)

Here the equality comes from (E.32) and the first inequality is obvious. For the second

inequality we use f(a)2 ≤ χ(a)φ(a− ζ) = ιφ(a− 2ζ), f(a)2 ≤ φ(a− ζ), and e−2aζφ(a− ζ) =

φ(a + ζ). The last inequality comes from that
∫∞
x
a2φ(a)da h (1 + x+)2Φ(−x) uniformly

54



over x. Moreover, we note (1 + (a∗ + ζ))e2a∗ζΦ(−a∗ − ζ) h e2a∗ζφ(a∗ + ζ) = φ(a∗ − ζ) h
(1 + (a∗ − ζ)+)Φ(ζ − a∗) using (E.15). Furthermore, since we are in case (ii), it holds that

ιΦ(2ζ − a∗) = o(Φ(ζ − a∗)) according to (E.17) and (E.21), and that 1 + (a∗ − ζ)+ = o(ζ)

(by the first part of (E.1) and ζ∗ h
√

logN due to the assumption on ρ). Substituting these

results into (E.54), we have that, under λ = a∗ and d̄∗ = ζ−1,

‖f − d̄∗ × g̃2‖2 = o(Φ(ζ − a∗)). (E.55)

On the other hand, we note ‖f − g‖2 ≤ Φ(−ζ) (see below (E.49)) and Φ(−ζ) = o(Φ(ζ − a∗))
due to 1 + (a∗ − ζ)+ = o(ζ) (see above (E.55)). Combining these results with (E.55), and

noting ‖g‖2 h Φ(ζ − a∗) in case (ii) according to (E.33), we finally obtain that, under λ = a∗

and d̄∗ = ζ−1,

‖g − d̄∗ × g̃2‖ = o(‖g‖). (E.56)

Since ‖g − d∗ × g̃1‖ ≤ ‖g − d̄∗ × g̃1‖ by definition of d∗, we prove θ2(λ) → 1 in case (ii) for

some sequence λ. (E.23) is completely established.

Next, it follows that, under λ ≤ a∗ and letting d̄∗ = ζ−1,

‖g − d∗ × g̃2‖2 (E.57)

≤ ‖g − d̄∗ × g̃2‖2 ≤ o(‖g‖2) + 2ζ−2

∫ a∗

λ

a2 1 + χ(a)

χ(a)
φ(a− ζ)da

≤ o(‖g‖2) +
8

ζ2ρ

∫ a∗

λ

a2φ(a)da ≤ o(‖g‖2) +
8a∗2

ζ2ρ
Φ(−λ) ≤ o(‖g‖2) +O(ρ−1Φ(−λ)). (E.58)

The second inequality comes from (E.56), the triangle inequality, the definition of g̃2(a) given

after (E.28), and that ψ̃2(a, λ) − ψ̃2(a, a∗) = a1{λ≤a≤a∗} for all a ≥ 0. The third inequality

comes from 1+χ(a)
χ(a)

φ(a−ζ) ≤ 2
χ(a)

φ(a−ζ) = 4
ρ
φ(a) for a ≤ a∗. The fourth inequality is obvious

and the last comes from a∗ . ζ as we are in case (ii). (E.58), (E.29), and (E.31) together

proves (E.25).

Lemma E4. Suppose the same assumptions as in Lemma E1. Then, for any deterministic

positive λ sequence satisfying ρNΦ(ζ − λ)→∞, it holds that, for q ∈ {1, 2},

‖ψ̃q(λ)‖2 = (1 + oP(1))NE(ψ̃q,i(λ)2).

Here ψ̃q(λ) stands for the N-dimensional vector whose components are ψ̃q,i(λ).

Proof. Throughout the proof λ is an arbitrary sequence as described in the statement of the

lemma. The strategy is to calculate the magnitude of E(ψ̃q,i(λ)2) and E(ψ̃q,i(λ)4), and then

establish the probability limit using Chebyshev’s inequality. It holds by the definition of ψ̃q,i

55



and (E.2) (the condition ρ→ 0 it relies on is assumed here too) that, for q ∈ {1, 2},

E(ψ̃q,i(λ)2q) = 2(1 + o(1))

∫ ∞
0

ψ̃q(a, λ)2q
(
φ(a) +

ρ

2
φ(a− ζ)

)
da. (E.59)

On the other hand, we can calculate, for j ∈ {2, 4},∫ ∞
0

ψ̃1(a, λ)jφ(a)da =

∫ ∞
0

ajφ(λ+ a)da h ιj1,1Φ(−λ), (E.60)∫ ∞
0

ψ̃1(a, λ)jφ(a− ζ)da =

∫ ∞
0

ajφ(λ− ζ + a)da h ιj1,2Φ(ζ − λ), (E.61)

where we use short-hand notation ι1,1 := (1 + λ)−1 and ι1,2 := 1+(ζ−λ)+
1+(λ−ζ)+ . Similarly, we have,

for j ∈ {2, 4},∫ ∞
λ

ψ̃2(a, λ)jφ(a)da =

∫ ∞
0

(λ+ a)jφ(λ+ a)da h ιj2,1Φ(−λ), (E.62)∫ ∞
λ

ψ̃2(a, λ)jφ(a− ζ)da =

∫ ∞
0

(λ+ a)jφ(λ− ζ + a)da h ιj2,2Φ(ζ − λ). (E.63)

where ι2,1 = λ+ (1 + λ)−1 and ι2,2 = λ+ 1+(ζ−λ)+
1+(λ−ζ)+ . Then it holds that, for q ∈ {1, 2},

E(ψ̃q,i(λ)4)

E(ψ̃q,i(λ)2)2
.

ι4q,1Φ(−λ) + ι4q,2ρΦ(ζ − λ)

ι4q,1Φ(−λ)2 + ι4q,2ρ
2Φ(ζ − λ)2

≤ ι2q,2
ι2q,1Φ(−λ) + ι2q,2ρΦ(ζ − λ)

ι4q,1Φ(−λ)2 + ι4q,2ρ
2Φ(ζ − λ)2

≤ ι2q,2
2

ι2q,1Φ(−λ) + ι2q,2ρΦ(ζ − λ)
≤ 2

ρΦ(ζ − λ)
.

Here we obtain the first inequality by substituting (E.60), (E.61), (E.62), and (E.63) into

(E.59). The second inequality comes from that ιq,1 ≤ ιq,2 for q ∈ {1, 2}. Since ρNΦ(ζ−λ)→
∞ by assumption, we have, for q ∈ {1, 2},

Var(‖ψ̃q‖2)

(E(‖ψ̃q‖2))2
≤

E(ψ̃
4

q,i)

NE(ψ̃
2

q,i)
2
.

1

NρΦ(ζ − λ)
→ 0. (E.64)

Here we suppress the argument λ of ψ̃q,i for simplicity and the first inequality comes from

that ψ̃q,i is i.i.d. across i. The current lemma directly follows from (E.64) and Chebyshev’s

inequality.

Lemma E5. Suppose the same assumptions as in Lemma E1. Let ψ∆,1(a, λ, b) := b1{|a|−λ≥−b}

and ψ∆,2(a, λ, b) := λ1{||a|−λ|≤b}. Also suppose that λN and bN are two deterministic positive

sequences satisfying ρNΦ(ζ − λN) → ∞ and bN = o
(
1/
√

logN
)
. Then it holds that, for
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q ∈ {1, 2},
E(|ψ∆,q(ži, λN , bN)|2) = o(E(ψ̃q(ži, λN)2)).

Proof. Throughout the proof λN and bN are two arbitrary sequences as described in the

statement of the lemma. For simplicity, we omit the subscript N of λN and bN and also omit

the last two arguments of ψ∆,q. Using (E.2) (the condition ρ→ 0 it relies on is assumed here

too), we have, for q ∈ {1, 2},

E(ψ∆,q(ži)
2) = 2(1 + o(1))

∫ ∞
0

ψ∆,q(a)2
(
φ(a) +

ρ

2
φ(a− ζ)

)
da. (E.65)

To evaluate the right-hand side of (E.65), we write∫
ψ∆,1(a)2φ(a)da = b2

∫ ∞
λ−b

φ(a)da = b2Φ(b− λ), (E.66)∫
ψ∆,1(a)2φ(a− ζ)da = b2

∫ ∞
λ−b

φ(a− ζ)da = b2Φ(ζ + b− λ), (E.67)∫
ψ∆,2(a)2φ(a)da = λ2

∫ λ+b

λ−b
φ(a)da ≤ 2bλ2φ((λ− b)+), (E.68)∫

ψ∆,2(a)2φ(a− ζ)da = λ2

∫ λ+b

λ−b
φ(a− ζ)da ≤ 2bλ2φ((λ− b− ζ)+). (E.69)

On the other hand, it holds that, for all sequence (a, ā) satisfying |ā− a| ≤ b,

b2Φ(−ā) ≤ cN
(1 + a+) logN

φ(ā+) ≤ cN(1 + a+)−3(φ(a+) + cNN
−1)

≤ cN(1 + a+)−2(Φ(−a) + cNN
−1). (E.70)

The first inequality comes from b = o
(
1/
√

logN
)

and (E.15). The second comes from

(D.18) of Lemma D4. For the last inequality we use (E.15), too. Further, we note that

(1 + λ+)−1 ≤ ι1,1 ≤ ι1,2 and (1 + (λ − ζ)+)−1 ≤ ι1,2 (introduced after (E.61)). Then, using

(E.70) (choose (a, ā) = (λ, λ − b) and (a, ā) = (λ − ζ, λ − ζ − b) respectively), and noting

ρ→ 0, ι1,1 ≤ ι1,2, and ρΦ(ζ − λ) & N−1 by assumption, we obtain

b2Φ(b− λ) + b2ρΦ(ζ + b− λ) = o(ι21,1Φ(−λ) + ι21,2ρΦ(ζ − λ)). (E.71)

Given (E.65), (E.66), (E.67), (E.59), (E.60), and (E.61), we obtain from (E.71) that

E(ψ∆,1(ži)
2) = o(E(ψ̃1,i(λ)2)), which proves the lemma for q = 1.

Next, it holds that, for all sequence (a, ā) satisfying |ā− a| ≤ b,

bφ(ā+) ≤ cN√
logN

φ(ā+) ≤ cN(1 + a+)−1φ(a+) + cNN
−1 ≤ cNΦ(−a) + cNN

−1. (E.72)
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We recall x+ = max{x, 0}. The first inequality comes from b = o
(
1/
√

logN
)
. The second

comes from (D.18) of Lemma D4. For the last inequality we use (E.15), too. Further,

we note that λ ≤ ι2,1 and λ ≤ ι2,2 (introduced after (E.61)). Then, using (E.72) (choose

(a, ā) = (λ, λ− b) and (a, ā) = (λ− ζ, λ− ζ − b) respectively), and noting ρ→ 0, ι2,1 ≤ ι2,2,

and ρΦ(ζ − λ) & N−1 by assumption, we obtain

bλ2Φ(b− λ) + bλ2ρΦ(ζ + b− λ) = o(ι21,1Φ(−λ) + ι21,2ρΦ(ζ − λ)). (E.73)

Given (E.65), (E.68), (E.69), (E.59), (E.62), and (E.63), we obtain from (E.73) that

E(ψ∆,2(ži)
2) = o(E(ψ̃2,i(λ)2)), which proves the lemma for q = 2.

Lemma E6. Suppose the same assumptions as in Proposition B2. Suppose λ is a positive

deterministic sequence satisfying ρNΦ(µ − λ) → ∞. Also suppose λ′ is a G-measurable

sequence λ′ that satisfies |λ′ − λ| = oP

(
1/
√

logN
)
. Then it holds that Ŝ ′q(λ

′) = Sq(λ) +

oP(SOPT + 1) for q = {1, 2}.

Proof. Throughout the proof λ and λ′ are arbitrary sequences as described in the statement

of the lemma. Every result holds for q ∈ {1, 2}.
We first provide a bound on ‖ψ̂q(λ′) − ψ̃q(λ)‖2. Since ži =

√
T (si + ε̄i) and we have

maxi |ε̄i| .P

√
(logN)/T by uniform bound on i.i.d. normal variables and |si| . N−d

by assumption, we obtain
√

(logN)/T maxi |ži| = oP

(
1/
√

logN
)

as (logN)3/T → 0 by

assumption. Combining this result with the first part of (D.12) of Lemma D2, and noting

T = o(N) by assumption, we obtain

sup
i≤N
|ẑi − ži| = oP

(
1/
√

logN
)
. (E.74)

Further, by definition it holds that, for all a, b ≥ 0, and λ ≥ 0,

sup
(a′,λ′):|a′−a|+|λ′−λ|≤b

|ψ̃q(a′, λ′)− ψ̃q(a, λ)| ≤ ψ∆,q(a, λ, b) + 1{q=2}ψ∆,1(a, λ, b), (E.75)

where ψ∆,q is introduced in the statement of Lemma E5. Substituting (E.74) and |λ′ − λ| =
oP

(
1/
√

logN
)

(by assumption) into (E.75) (choose (a′, a) = (ẑi, ži)), applying Lemma E5,

noting |ψ̃1(a, λ)| ≤ |ψ̃2(a, λ)| by definition, and using Chebyshev’s inequality, we obtain

‖ψ̂q(λ′)− ψ̃q(λ)‖2 = o(NE(ψ̃q,i(λ)2)). (E.76)

Using maxi≤N |σ̂i/σi − 1| .P cN by (D.1) of Lemma D1 and the triangular inequality, we

further have
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‖σŵ′q(λ′)− ψ̃q(λ)‖2 = o(NE(ψ̃q,i(λ)2)). (E.77)

Next, we write

|σŵ′q(λ′)ᵀψ−ψ̃q(λ)ᵀψ| ≤ ‖σŵ′q(λ′)ᵀ−ψ̃q(λ)‖‖ψ‖ = oP

(√
NE(ψ̃q,i(λ)2)(1 + SOPT)

)
. (E.78)

The first inequality comes from Cauchy-Schwarz inequality. For the last equality we utilize

‖ψ‖ .P 1 + SOPT by Corollary 2 and (E.77). On the other hand, we have

Var(ψ̃q(λ)ᵀψ) ≤ NE(ψ̃q,i(λ)2ψ2
i ) ≤ NE(ψ̃q,i(λ)2α2

i ) = o(NE(ψ̃q,i(λ)2)). (E.79)

The first inequality comes from that both ψ̃q,i(λ) and ψi are i.i.d. across i. The second

inequality comes from ψi = E(αi|G) and that ψ̃q,i(λ) is G-measurable. The last equality

comes from |αi| ≤ µ = o(1). As a result of (E.79) and Chebyshev’s inequality, we have

ψ̃q(λ)ᵀψ = NE(ψ̃q,i(λ)ψi) + oP

(√
NE(ψ̃q,i(λ)2)

)
. (E.80)

Combining (E.78) and (E.80), we obtain

σŵ′q(λ
′)ᵀψ = NE(ψ̃q,i(λ)ψi) + oP

(√
NE(ψ̃q,i(λ)2)(1 + SOPT)

)
. (E.81)

Moreover, it holds that

σ2‖ŵ′q(λ′)‖2 = ‖ψ̃q(λ)‖2 +O(‖σŵ′q(λ′)− ψ̃q(λ)‖2 + ‖ψ̃q(λ)‖‖σŵ′q(λ′)− ψ̃q(λ)‖)

= (1 + oP(1))NE(ψ̃q,i(λ)2). (E.82)

The first inequality comes from Cauchy-Schwarz inequality. The second equality is a direct

result of Lemma E4 and (E.77).

Next, we note that E(ψ̃q,i(λ)) = 0 by symmetry of ψ̃(a, λ) in a. Because ψ̃q,i(λ) is i.i.d.

across i and independent of β, it follows

E(‖βᵀψ̃q(λ)‖2|β) . E(ψ̃q,i(λ)2)N‖β‖2
MAX .P NE(ψ̃q,i(λ)2). (E.83)

Then we have

σ‖βᵀŵ′q(λ
′)‖ ≤ ‖βᵀψ̃q(λ)‖+ ‖βᵀ(σŵ′q(λ

′)− ψ̃q(λ))‖ .P

√
NE(ψ̃q,i(λ)2) + cNN

√
E(ψ̃q,i(λ)2).

(E.84)

where the last inequality comes from (E.83) and (E.77). Therefore, we obtain
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‖Mβŵ
′
q(λ
′)‖2 = ‖ŵ′q(λ′)‖2 − ŵ′q(λ′)ᵀPβŵ′q(λ′) = σ2‖ŵ′q(λ′)‖2 + oP(NE(ψ̃q,i(λ)2)), (E.85)

ŵ′q(λ
′)ᵀMβψ = ŵ′q(λ

′)ᵀψ + ŵ′q(λ
′)ᵀPβψ = ŵ′q(λ

′)ᵀψ + oP

(√
NE(ψ̃q,i(λ)2)

)
. (E.86)

The last equalities of both results come from (E.84) and λmin(βᵀβ) &P N . For the last

equality of (E.86), we also use ‖βᵀψ‖ .P N
1/2E(α2

i )
1/2 .P cNN

1/2. We now conclude that

ŵ′q(λ
′)ᵀMβψ

‖Mβŵ′q(λ
′)‖

=
(1 + oP(1))ŵ′q(λ

′)ᵀψ√
NE(ψ̃q,i(λ)2)

+ oP(1)

= (1 + oP(1))Sq(λ) + oP(1 + SOPT) = Sq(λ) + oP(SOPT + 1). (E.87)

The first equality comes from (E.85), (E.86), and (E.82). The second comes from (E.81).

The last equality comes from Sq(λ) ≤ N1/2E(ψ2
i )

1/2 = SOPT, in which the inequality is just

Cauchy-Schwarz and the equality holds by definition.

Finally, (C.5) and (C.6) establishes that, under Assumption 1 and for all G-measurable

w, wᵀ(α − E(α|G))/‖w‖ = oP(1). Choosing w = ŵ′q(λ
′)ᵀMβ, and noting ψ = σ−1E(α|G), we

obtain

Ŝ ′q(λ
′) =

ŵ′q(λ
′)ᵀMβα

σ‖Mβŵ′q(λ
′)‖

=
ŵ′q(λ

′)ᵀMβψ

‖Mβŵ′q(λ
′)‖

+ oP(1). (E.88)

Given (E.87) and (E.88), we prove the lemma.

Lemma E7. Suppose the same assumptions as in Proposition B2. Then it holds that Ŝ ′q(λ) =

oP(1), for all G-measurable positive sequence λ satisfying µ2ρNΦ(ζ − λ) = oP(1) and for

q ∈ {1, 2}.

Proof. Throughout the proof λ is an arbitrary sequence as described in the statement of the

lemma. Every result holds for q ∈ {1, 2}. We let λ∗ be a deterministic sequence such that

λ ≥ λ∗ in probability and µ2ρNΦ(ζ − λ∗)→ 0, which is apparently always feasible.

When Φ(ζ − λ∗) & 1, we have µ2ρN → 0 and thereby (SOPT)2 = NE(ψ2
i ) ≤ NE(s2

i ) ≤
ρNµ2 → 0. Since Ŝ ′q(λ) is the Sharpe ratio generated by ŵ′q(λ)ᵀMβ, which is G-measurable

and satisfy ŵ′q(λ)ᵀMββ = 0. Then we obtain Ŝ ′q(λ) ≤ SOPT + oP(1) = oP(1) from the second

part of Theorem 2 and Corollary 2 (the assumptions of the lemma obviously guarantee the

prerequisites of both). Since −Ŝ ′q(λ) is the Sharpe ratio generated by −ŵ′q(λ)ᵀMβ, we obtain

−Ŝ ′q(λ) ≤ oP(1), too.

When Φ(ζ − λ∗)→ 0, we have Φ(−λ∗) ≤ Φ(ζ − λ∗)→ 0. Moreover, it holds that, for all

sequence (a, ā) satisfying |ā− a| = o
(
1/
√

logN
)
,

Φ(−ā) .
1

1 + a+

φ(ā+) .
1

1 + a+

(φ(a+) + cNN
−2) . Φ(−a) + cNN

−2. (E.89)
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The first inequality comes from |ā− a| = o
(
1/
√

logN
)

and (E.15). The second comes from

(D.18) of Lemma D4. For the last inequality we use (E.15), too. Then, using (E.89) (choose

a = λ∗ and a = λ∗ − ζ respectively), we have that, for all bN = o
(
1/
√

logN
)
,{

NΦ(bN − λ∗) . NΦ(−λ∗) + cNN
−1 = o(N),

ρNΦ(ζ + bN − λ∗) . ρNΦ(ζ − λ∗) + cNρN
−1 . o(µ−2).

(E.90)

Here the last inequality comes from µ2ρNΦ(ζ − λ∗) = o(1) and µ = o(1) by assumption.

Hence, it holds that, for some bN = o
(
1/
√

logN
)
,∑

i≤N

1{ŵ′q,i(λ)6=0} .P

∑
i≤N

1{|ži|≥λ∗−bN}

.P NΦ(bN − λ∗) + ρNΦ(ζ + bN − λ∗) = o(N), (E.91)∑
i≤N

1{ŵ′q,i(λ)6=0,αi 6=0} .P

∑
i≤N

1{|ži|≥λ∗−bN ,αi 6=0} .P ρNΦ(ζ + bN − λ∗) . o(µ−2). (E.92)

For both results, the first inequality comes from (E.74), the second inequality comes from the

density of ži and Chebyshev’s inequality, the last inequality comes from (E.90). As a result,

we have

‖βᵀŵ′q(λ)‖ . ‖β‖MAX‖ŵ′q(λ)‖
√∑

i≤N

1{ŵ′q,i(λ) 6=0} = oP

(√
N‖ŵ′q(λ)‖

)
. (E.93)

Here the first inequality comes from Cauchy-Schwarz inequality, and the last equality comes

from (E.91). Then we obtain

‖Mβŵ
′
q(λ)‖2 = ‖ŵ′q(λ)‖2 − ŵ′q(λ)ᵀPβŵ′q(λ) = (1 + oP(1))‖ŵ′q(λ)‖2. (E.94)

For the last equality, we use (E.93) and λmin(βᵀβ) &P N . Similarly, using (E.93),

λmin(βᵀβ) &P N and ‖βᵀα‖ .P N
1/2E(α2

i )
1/2 .P cNN

1/2, we obtain

ŵ′q(λ)ᵀMβα = ŵ′q(λ)ᵀα + ŵ′q(λ)ᵀPβα = ŵ′q(λ)ᵀα + oP(‖ŵ′q(λ)‖). (E.95)

Combining (E.85) and (E.86), we now conclude that

Ŝ ′q(λ) =
ŵ′q(λ)ᵀMβα

‖Mβŵ′q(λ)‖
= (1 + oP(1))

ŵ′q(λ)ᵀα

‖ŵ′q(λ)‖
+ oP(1). (E.96)

On the other hand, it holds that
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|ŵ′q(λ)ᵀα|
‖ŵ′q(λ)‖

≤ µ

∑
i≤N |ŵ′q,i(λ)|1{w̃q,i(λ)6=0,αi 6=0}

‖ŵ′q(λ)‖
≤ µ

√∑
i≤N

1{ŵ′q,i(λ)6=0,αi 6=0} = oP(1). (E.97)

The first inequality holds by |si| = µ
σ
1{αi 6=0}, the second by Cauchy-Schwarz inequality, and

the last equality holds by (E.92). The lemma follows from (E.96) and (E.97).
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