SiameseOI with TAO Deploy#

To generate an optimized TensorRT engine, a SiameseOI .etlt or .onnx file, which is first generated using tao model visual_changenet export, is taken as an input to tao deploy visual_changenet gen_trt_engine. For more information about training a SiameseOI model, refer to the SiameseOI training documentation.

Converting an ETLT or ONNX File into TensorRT Engine#

gen_trt_engine#

The gen_trt_engine section in the experiment specification file provides options for generating a TensorRT engine from an .etlt or .onnx file. The following is an example configuration:

gen_trt_engine:
  results_dir: "${results_dir}/gen_trt_engine"
  onnx_file: "${results_dir}/export/oi_model.onnx"
  trt_engine: "${results_dir}/gen_trt_engine/oi_model.trt.v100"
  input_channel: 3
  input_width: 400
  input_height: 100
  tensorrt:
    data_type: fp32
    workspace_size: int = 1024
    min_batch_size: int = 1
    opt_batch_size: int = 1
    max_batch_size: int = 1

Parameter

Datatype

Default

Description

Supported Values

results_dir

string

The path to the results directory

onnx_file

string

The path to the exported ETLT or ONNX model

trt_engine

string

The absolute path to the generated TensorRT engine

input_channel

unsigned int

3

The input channel size. Only a value of 3 is supported.

3

input_width

unsigned int

400

The input width

>0

input_height

unsigned int

100

The input height

>0

batch_size

unsigned int

-1

The batch size of the ONNX model

>=-1

tensorrt#

The tensorrt parameter defines TensorRT engine generation.

Parameter

Datatype

Default

Description

Supported Values

data_type

string

fp32

The precision to be used for the TensorRT engine

fp32/fp16/int8

workspace_size

unsigned int

1024

The maximum workspace size for the TensorRT engine

>1024

min_batch_size

unsigned int

1

The minimum batch size used for the optimization profile shape

>0

opt_batch_size

unsigned int

1

The optimal batch size used for the optimization profile shape

>0

max_batch_size

unsigned int

1

The maximum batch size used for the optimization profile shape

>0

Use the following command to run SiameseOI engine generation:

tao deploy optical_inspection gen_trt_engine -e /path/to/spec.yaml \
           results_dir=/path/to/etlt/file \
           gen_trt_engine.onnx_file=/path/to/onnx/file \
           gen_trt_engine.trt_engine=/path/to/engine/file \
           gen_trt_engine.tensorrt.data_type=<data_type>

Required Arguments#

  • -e, --experiment_spec_file: The path to the experiment spec file

  • results_dir: The global results directory. The engine generation log will be saved in the results_dir.

  • gen_trt_engine.onnx_file: The .onnx model to be converted

  • gen_trt_engine.trt_engine: The path where the generated engine will be stored

  • gen_trt_engine.tensorrt.data_type: The precision to be exported

Sample Usage#

Here’s an example of using the gen_trt_engine command to generate an FP16 TensorRT engine:

tao deploy optical_inspection gen_trt_engine -e $DEFAULT_SPEC
           results_dir=$RESULTS_DIR
           gen_trt_engine.onnx_file=$ONNX_FILE \
           gen_trt_engine.trt_engine=$ENGINE_FILE \
           gen_trt_engine.tensorrt.data_type=FP16

Running Inference through TensorRT Engine#

You can reuse the spec file that was specified for TAO inference. The following is an example inference spec:

inference:
  gpu_id: 0
  trt_engine: /path/to/engine/file
  results_dir: "${results_dir}/inference"

Use the following command to run SiameseOI engine inference:

tao deploy optical_inspection inference -e /path/to/spec.yaml \
           results_dir=$RESULTS_DIR \

Required Arguments#

  • -e, --experiment_spec_file: The path to the experiment spec file

  • results_dir: The global results directory. The engine generation log will be saved in the results_dir.

Sample Usage#

Here’s an example of using the inference command to run inference with the TensorRT engine:

tao deploy optical_inspection inference -e $DEFAULT_SPEC
           results_dir=$RESULTS_DIR