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Who am I?

• Open Source developer for 15 years

• C++ developer for 13 years

• Software Architect at Intel’s Open Source Technology 
Center (OTC)

• Maintainer of two modules in the Qt Project
‒ QtCore and QtDBus

• MBA and double degree in Engineering

• Previously, led the “Qt Open Governance” project
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Definitions

• Binary compatibility

• Source compatibility

• Behaviour compatibility

• Bug compatibility
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Binary compatibility

Two libraries are binary compatible with each other if:

• Programs compiled against one will load and run correctly* 
against the other

* by some definition of “correct”
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Source compatibility

Two libraries are source compatible with each other if:

• Source code written against one will compile without changes 
against the other
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Behaviour and bug compatibility

Two libraries are 
behaviour-compatible with 
each other if:

• The program will exhibit the 
same behaviour with either 
library

Two libraries are bug-
compatible with each other 
if:

• Expanded version of 
behaviour compatibility to 
include buggy behaviour
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Forwards and backwards

Depends on the point of view

• Backwards compatibility: 
newer version retains compatibility with older version
‒ You can upgrade the library

• Forwards compatibility: 
older version “foreshadows” compatibility with newer version
‒ You can downgrade the library
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This presentation focuses on

• Backwards binary compatibility

• This depends on the ABI
‒ Will focus on the System V ELF ABI for Linux and IA-64 C++ ABI



12

© 2013 Intel

Why you should care

Library used by libraries

• They expose your API in their 
API

• Their users might want to use 
a newer version of your library

Library used by anything

• Upgrading parts of the system

• Large, complex project
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Project with 2 modules: initial state

Mod 1 Mod 2

Your lib Your lib

Data
exchange
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Your lib v2

Lib is upgraded in one module

Mod 1
(recompiled)

Mod 2

Your lib

Data
exchange

Does this still load?
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Co-existing libraries

Mod 1 Mod 2

Your lib Your lib

Data
exchange

Your lib v2

Does it still work?



17

© 2013 Intel

If you’re developing an application...

• This does not apply to you

• Except if the application has plugins

• Or if it has independent modules
The application has libraries



The details
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Binary compatibility requires...

• No public¹ symbol be removed

• All public¹ functions retain retain their properties
‒ Which arguments are passed in registers, which are passed on the stack, 

implicit arguments, argument count, etc.

• All public¹ structures retain their layout and properties
‒ For both C and C++ aggregates: sizeof, alignof, order & type of publicly-

accessible members, etc.
‒ For C++ aggregates: dsize, nvsize, PODness, etc.

1) Symbols intentionally made public as part of the API plus private symbols used in inline functions
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/* lib-header.h. */
struct Data {
    int i;
    int j;
};

extern struct Data global_data;
void function(struct Data *data);

/* lib-source.c */

struct Data global_data = { 1 };
void function(struct Data *data)
{
}

Example: simple C library (C++ comes later)

Could be “B” too

$ gcc -c /tmp/lib-source.c
$ nm lib-source.o               
00000000 T function
00000000 D global_data
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No public symbol is removed

• Easy to do

• Do not remove any variables or functions that exist

• Do not change any variable or function in a way that would 
cause its external (mangled) name to change

• In our example, we cannot:
‒ Remove either the function “function” or the variable “global_data”
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All functions retain their properties

• The C++ language helps you
‒ This requirement is mostly fulfilled by the previous and next requirements
‒ If the data types retain their properties
‒ And if the mangled name of a function is retained
‒ The function retains its properties 

• In C, it’s possible to change the arguments without changing the 
external symbol

• In our example:
‒ The function “function” must not read more than 1 argument of integral 

type
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All data types retain their properties

• Can be automated with a C or C++ parser and the compiler

• Best avoided:
‒ Use opaque types / d-pointers / private implementation

• Examples:
‒ Change alignment → user’s structure could add or remove padding
‒ Change non-padded size → the compiler is allowed to use tail-padding
‒ (C++) Make non-POD → user’s structure becomes non-POD too

• In our example, we cannot:
‒ Reorder the members in the struct
‒ Remove the members
‒ Place the members in a union with a long long (changes the alignment)
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And then there’s C++

Life gets more complicated

• External names for all¹ 
functions are mangled

• External names for all¹ 
variables in namespaces are 
mangled
‒ In some other ABIs, even those in 

the base namespace

• Non-POD (Plain Old Data) 
aggregates have more rules

1) all except those declared with extern “C”

But we gain too:

• Functions can be overloaded

• Mangled names help in 
ensuring binary compatibility 
for functions
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C++ mangled names

IA-64 C++ ABI

• Prefixed by _Z

• Case sensitive

• Doesn’t mangle free variables

• Mangles only what is required 
for overloads that can co-exist

Microsoft Visual Studio

• Prefixed by question mark (?)

• Case insensitive

• Mangles free variables

• Mangles everything, 
including:
‒ Return type
‒ Struct vs class
‒ Public, protected, private
‒ Near, far, 64-bit pointers
‒ cv-qualifiers 
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/* lib-header.h. */
struct Data {
    int i;
    int j;
};

extern struct Data global_data;
void function(struct Data *data);

/* lib-source.cpp */

struct Data global_data = { 1 };
void function(struct Data *data)
{
}

Example: our library in C++

$ g++ -c /tmp/lib-source.cpp
$ nm lib-source.o               
00000000 T _Z8functionP4Data
00000000 D global_data

Note the presence
of “Data”



What works
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Guidelines

• Don’t expose what you don’t need

• Be conservative in what you change
‒ Follow the “Binary Compatibility with C++”[1] guidebook

• Use automated test tools

[1] http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
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Minimal exported API

• Design a minimal API
‒ If you’re unsure about something, don’t include it (yet)
‒ Limit exports by using ELF symbol visibility:

-fvisibility=hidden -fvisibility-inlines-hidden
__attribute__((visibility(“default”)))

• Use opaque or simple types
‒ Private implementation, d-pointers

• Use an API based on functions
‒ Avoid exported variables
‒ Avoid returning pointers or C++ references to internal variables
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Why functions and private implementations?

In C

• Use opaque types
typedef struct _GDir GDir;

• Can’t be constructed by the 
user – always passed by 
pointer

• Free to be changed at will

In C++

• Use private implementation

• Your public types won’t 
change much or at all
‒ Lowers the risk of changing the 

type’s properties

• You can freely change the 
private implementation

• Adding new functions is easier 
than modifying the public type

Forbidden!

C99 7.1.3p1: “All identifiers that begin with an underscore and either an uppercase letter or 
another underscore are always reserved for any use”
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Changing non-virtual functions¹ (C and C++)

You can

• Add a new function

• De-inline an existing function
‒ If it’s acceptable that the old copy 

be run

• Remove a private function
‒ If it has never been called in an 

inline function, ever

• (C++) Change default 
parameters

You cannot

• Unexport or remove public 
functions

• Inline an existing function

• (C) Change the parameter so 
it would be passed differently

• (C++) Change its signature:
‒ Change or add parameters
‒ Change cv-qualifier
‒ Change access rights
‒ Change return type

1) includes all C functions as well as C++ functions with extern “C”



39

© 2013 Intel

Changing virtual functions (C++ only)

You can

• Override an existing virtual 
‒ Only from primary, non-virtual base

• Add a new virtual to a leaf 
(final) class

You cannot

• Add or remove a virtual to a 
non-final class

• Change the order of the 
declarations

• Add a virtual to a class that 
had none
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“Anchoring” the virtual table (C++ only)

• Make sure there’s one non-inline virtual
‒ Preferably the destructor

• Avoid virtuals in template classes
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Changing non-static members in aggregates 
(C and C++)

You can

• Rename private members¹

• Repurpose private members²

• Add new members to the end, 
provided the struct is:
‒ POD (C++98 and all C structs)
‒ Standard-layout (C++11)

• and:
‒ (C++) The constructor is private; OR
‒ The struct has a member containing 

its size

You cannot

• Reorder public members in any 
way

• Remove members

You should not

• (C++) Change member access 
privileges

• (C++) Add a reference or const 
or non-POD member to a struct 
without one

1) provided the class has no friends; 2) provided old inline functions still work
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Testing compliance

• Run automated tests frequently

• Run full tests at least once before the release

• On Windows: use the exports file

• On Unix: use nm, otool (Mac), readelf (ELF systems)

• GCC: use -fdump-class-hierarchy

• Everywhere: use the Linux Foundation’s ABI Compliance 
Checker[1]
‒ Confirmed to run on Mac, Windows and FreeBSD

[1] http://ispras.linuxbase.org/index.php/ABI_compliance_checker
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Manual checking before release

• Do a “header diff”

• git diff --diff-filter=M oldtag -- \*.h
‒ Manually exclude headers that aren’t installed
‒ Or obtain the list of installed headers from your buildsystem
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Be careful with false positives

• You probably want a white and black list

• White-list your library’s own API

• Black-list “leaked” symbols from other libraries
‒ Inlines and “unanchored” virtual tables
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Further: experimental API

• Don’t do it like ICU

• Place it in a separate library

• In fact, place it in a separate source release
‒ Keeps Linux distributions happy
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Further: breaking binary compatibility

• Announce in well in advance

• Keep previous version maintained for longer than usual

• Try to keep source compatibility

• Change your library names (ELF soname)

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
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Resources

• Binary compatibility guide in KDE Techbase:
‒ http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
‒ Examples: http://techbase.kde.org/Policies/Binary_Compatibility_Examples

• Calling convention article (includes MSVC, Sun CC):
‒ http://www.agner.org/optimize/calling_conventions.pdf

• IA-64 / Cross-platform C++ ABI:
‒ http://mentorembedded.github.io/cxx-abi/abi.html
‒ http://refspecs.linux-foundation.org/cxxabi-1.86.html

• “How to Write Shared Libraries”, by Ulrich Drepper
‒ http://www.akkadia.org/drepper/dsohowto.pdf

• libabc
‒ https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git



Thiago Macieira

thiago.macieira@intel.com
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