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Who am 1?

* Open Source developer for 15 years
* C++ developer for 13 years

* Software Architect at Intel’s Open Source Technology
Center (OTC)

* Maintainer of two modules in the Qt Project
QtCore and QtDBus

* MBA and double degree in Engineering

* Previously, led the “Qt Open Governance” project
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Definitions

* Binary compatibility

Source compatibility

Behaviour compatibility

Bug compatibility
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Binary compatibility

Two libraries are binary compatible with each other if:

* Programs compiled against one will load and run correctly*
against the other

* by some definition of “correct”

© 2013 Intel



Source compatibility

Two libraries are source compatible with each other if:

* Source code written against one will compile without changes
against the other
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Behaviour and bug compatibility

Two libraries are Two libraries are bug-
behaviour-compatible with compatible with each other
each other if: if:
* The program will exhibit the * Expanded version of

same behaviour with either behaviour compatibility to

library include buggy behaviour
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Forwards and backwards

Depends on the point of view

* Backwards compatibility:
newer version retains compatibility with older version
You can upgrade the library

* Forwards compatibility:
older version “foreshadows” compatibility with newer version
You can downgrade the library
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This presentation focuses on
* Backwards binary compatibility

* This depends on the ABI
Will focus on the System V ELF ABI for Linux and I1A-64 C++ ABI
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Why you should care

Library used by libraries Library used by anything

* They expose your APl in their ¢ Upgrading parts of the system
API

* Their users might want to use
a newer version of your library

* Large, complex project

© 2013 Intel



14

Project with 2 modules: initial state
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Mod 1

Your lib

Data
exchange
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Mod 2

Your lib




Lib is upgraded in one module

Mod 1 Mod 2
(recompiled)
Data
exchange
o ||

Does this still load?
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Co-existing libraries

Mod 1 Mod 2

Data
exchange

Does it still work?
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If you’re developing an application...
* This does not apply to you

* Except if the application has plugins o o
~ The application has libraries

* Or if it has independent modules
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The detalls




Binary compatibility requires...

* No publict symbol be removed

* All publict functions retain retain their properties

Which arguments are passed in registers, which are passed on the stack,
implicit arguments, argument count, etc.

* All publict structures retain their layout and properties

For both C and C++ aggregates: sizeof, alignof, order & type of publicly-
accessible members, etc.

For C++ aggregates: dsize, nvsize, PODness, etc.

©2013Intel 1) Symbols intentionally made public as part of the API plus private symbols used in inline functions



Example: simple C library (C++ comes later)

/* lib-header.h. =%/
struct Data {

int 1i;

int j;

1

extern struct Data global_data;
void function(struct Data *data);

/* lib-source.c */

struct Data global_data = { 1 };
void function(struct Data *data)

{
b

$ gcc -c /tmp/lib-source.c
$ nm lib-source.o

00000000 T function
00000000 D global_data

Could be “B” too
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No public symbol is removed

* Easy to do
* Do not remove any variables or functions that exist

* Do not change any variable or function in a way that would
cause its external (mangled) name to change

* In our example, we cannot:
Remove either the function “function” or the variable “global _data”
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All functions retain their properties

* The C++ language helps you
This requirement is mostly fulfilled by the previous and next requirements
If the data types retain their properties
And if the mangled name of a function is retained
The function retains its properties

* In C, it’s possible to change the arguments without changing the
external symbol

* In our example:

The function “function” must not read more than 1 argument of integral
type
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All data types retain their properties

* Can be automated with a C or C++ parser and the compiler

* Best avoided:
Use opaque types / d-pointers / private implementation

* Examples:
Change alignment — user’s structure could add or remove padding
Change non-padded size — the compiler is allowed to use tail-padding
(C++) Make non-POD - user’s structure becomes non-POD too

* In our example, we cannot:
Reorder the members in the struct
Remove the members
Place the members in a union with a long long (changes the alignment)
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And then there’s C++

Life gets more complicated But we gain too:

* External names for all? * Functions can be overloaded
functions are mangled - Mangled names help in

* External names for all* ensuring binary compatibility
variables in namespaces are for functions
mangled

In some other ABIs, even those in
the base namespace

* Non-POD (Plain Old Data)
aggregates have more rules

©2013Intel 1) all except those declared with extern “C”



C++ mangled names

IA-64 C++ ABI Microsoft Visual Studio
* Prefixed by Z * Prefixed by question mark (?)
* Case sensitive * Case Insensitive

* Doesn’t mangle free variables ¢ Mangles free variables

* Mangles only what is required * Mangles everything,
for overloads that can co-exist  including:
Return type
Struct vs class
Public, protected, private
Near, far, 64-bit pointers
cv-qualifiers
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Example: our library in C++

/* lib-header.h. */ $ g++ -c /tmp/lib-source.cpp
struct Data { $ nm lib-source.o
int i; 00000000 T _Z8functionP4Data
int j; 00000000 D/global_data
};

extern struct Data global_data;
void function(struct Data *data);

Note the presence

/* lib-source. cpp */ Of “Data”

struct Data global_data = { 1 };
void function(struct Data *data)

{
b
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What works




Guidelines

* Don’t expose what you don’t need

* Be conservative in what you change
Follow the “Binary Compatibility with C++"[1] guidebook

* Use automated test tools

© 2013 Intel [1] http://techbase.kde.org/Policies/Binary _Compatibility Issues With C++



Minimal exported API

* Design a minimal API
If you're unsure about something, don’t include it (yet)
Limit exports by using ELF symbol visibility:
-fvisibility=hidden -fvisibility-inlines-hidden
_attribute__((visibility(“default”)))

* Use opaque or simple types
Private implementation, d-pointers

* Use an API based on functions
Avoid exported variables
Avoid returning pointers or C++ references to internal variables
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Why functions and private implementations?

InC In C++
* Use opaque types * Use private implementation
typedef struct ir GDir;

* Your public types won'’t
Forbidden! @ change much or at all

Lowers the risk of changing the

* Can'’t be constructed by the type’s properties

user — always passed by

pointer * You can freely change the

private implementation

* Free to be changed at will _ _ _ _
* Adding new functions is easier

than modifying the public type

C99 7.1.3p1l: “All identifiers that begin with an underscore and either an uppercase letter or
another underscore are always reserved for any use”
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Changing non-virtual functions* (C and C++)

You can You cannot
* Add a new function * Unexport or remove public
functions

* De-inline an existing function
If it's acceptable that the old copy ~ * Inline an existing function

be run
_ _ * (C) Change the parameter so
* Remove a private function it would be passed differently
If it has never been called in an _ _
inline function, ever * (C++) Change its signature:

Change or add parameters
Change cv-qualifier
Change access rights
Change return type

* (C++) Change default
parameters

o2013Intel 1) includes all C functions as well as C++ functions with extern “C”



Changing virtual functions (C++ only)

You can You cannot
* Override an existing virtual * Add or remove a virtual to a
Only from primary, non-virtual base  non-final class
* Add a new virtual to a leaf * Change the order of the
(final) class declarations

* Add a virtual to a class that
had none
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“Anchoring” the virtual table (C++ only)

* Make sure there’'s one non-inline virtual
Preferably the destructor

* Avoid virtuals in template classes

© 2013 Intel



Changing non-static members in aggregates
(C and C++)

You can You cannot

* Rename private members? * Reorder public members in any

* Repurpose private members? way

* Add new members to the end, * Remove members

provided the struct Is:
POD (C++98 and all C structs)
Standard-layout (C++11) * (C++) Change member access

privileges

You should not

* and:
(C++) The constructor is private; OR  » (C++) Add a reference or const
The struct has a member containing or non-POD member to a struct
Its size without one

© 2013 Intel 1) provided the class has no friends; 2) provided old inline functions still work



Testing compliance

* Run automated tests frequently

* Run full tests at least once before the release

* On Windows: use the exports file

* On Unix: use nm, otool (Mac), readelf (ELF systems)
* GCC: use -fdump-class-hierarchy

* Everywhere: use the Linux Foundation’s ABI Compliance
Checker[1]

Confirmed to run on Mac, Windows and FreeBSD

© 2013 Intel [1] http://ispras.linuxbase.org/index.php/ABI_compliance_checker



Manual checking before release
* Do a “header diff”

egit diff --diff-filter=M oldtag -- \*.h
Manually exclude headers that aren’t installed
Or obtain the list of installed headers from your buildsystem
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Be careful with false positives

* You probably want a white and black list
* White-list your library’s own API

* Black-list “leaked” symbols from other libraries
Inlines and “unanchored” virtual tables
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Further: experimental API

* Don'tdo it like ICU
* Place it in a separate library

* In fact, place it in a separate source release
Keeps Linux distributions happy

© 2013 Intel



Further: breaking binary compatibility

* Announce in well in advance

* Keep previous version maintained for longer than usual
* Try to keep source compatibility

* Change your library names (ELF soname)

© 2013 Intel


http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

Resources

* Binary compatibility guide in KDE Techbase:
http://techbase.kde.org/Policies/Binary _Compatibility Issues_With C++
Examples: http://techbase.kde.org/Policies/Binary Compatibility Examples

* Calling convention article (includes MSVC, Sun CC):
http://www.agner.org/optimize/calling_conventions.pdf

* |A-64 / Cross-platform C++ ABI:
http://mentorembedded.github.io/cxx-abi/abi.html
http://refspecs.linux-foundation.org/cxxabi-1.86.html

* “How to Write Shared Libraries”, by Ulrich Drepper
http://www.akkadia.org/drepper/dsohowto.pdf

* libabc
https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.qgit
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Thiago Macieira

thiago.macieira@intel.com
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