
Binary compatibility for
library developers

Thiago Macieira, Qt Core Maintainer
LinuxCon North America,
New Orleans, Sept. 2013

2

© 2013 Intel

Who am I?

• Open Source developer for 15 years

• C++ developer for 13 years

• Software Architect at Intel’s Open Source Technology
Center (OTC)

• Maintainer of two modules in the Qt Project
‒ QtCore and QtDBus

• MBA and double degree in Engineering

• Previously, led the “Qt Open Governance” project

6

© 2013 Intel

Definitions

• Binary compatibility

• Source compatibility

• Behaviour compatibility

• Bug compatibility

7

© 2013 Intel

Binary compatibility

Two libraries are binary compatible with each other if:

• Programs compiled against one will load and run correctly*
against the other

* by some definition of “correct”

8

© 2013 Intel

Source compatibility

Two libraries are source compatible with each other if:

• Source code written against one will compile without changes
against the other

9

© 2013 Intel

Behaviour and bug compatibility

Two libraries are
behaviour-compatible with
each other if:

• The program will exhibit the
same behaviour with either
library

Two libraries are bug-
compatible with each other
if:

• Expanded version of
behaviour compatibility to
include buggy behaviour

10

© 2013 Intel

Forwards and backwards

Depends on the point of view

• Backwards compatibility:
newer version retains compatibility with older version
‒ You can upgrade the library

• Forwards compatibility:
older version “foreshadows” compatibility with newer version
‒ You can downgrade the library

11

© 2013 Intel

This presentation focuses on

• Backwards binary compatibility

• This depends on the ABI
‒ Will focus on the System V ELF ABI for Linux and IA-64 C++ ABI

12

© 2013 Intel

Why you should care

Library used by libraries

• They expose your API in their
API

• Their users might want to use
a newer version of your library

Library used by anything

• Upgrading parts of the system

• Large, complex project

14

© 2013 Intel

Project with 2 modules: initial state

Mod 1 Mod 2

Your lib Your lib

Data
exchange

15

© 2013 Intel

Your lib v2

Lib is upgraded in one module

Mod 1
(recompiled)

Mod 2

Your lib

Data
exchange

Does this still load?

16

© 2013 Intel

Co-existing libraries

Mod 1 Mod 2

Your lib Your lib

Data
exchange

Your lib v2

Does it still work?

17

© 2013 Intel

If you’re developing an application...

• This does not apply to you

• Except if the application has plugins

• Or if it has independent modules
The application has libraries

The details

19

© 2013 Intel

Binary compatibility requires...

• No public¹ symbol be removed

• All public¹ functions retain retain their properties
‒ Which arguments are passed in registers, which are passed on the stack,

implicit arguments, argument count, etc.

• All public¹ structures retain their layout and properties
‒ For both C and C++ aggregates: sizeof, alignof, order & type of publicly-

accessible members, etc.
‒ For C++ aggregates: dsize, nvsize, PODness, etc.

1) Symbols intentionally made public as part of the API plus private symbols used in inline functions

20

© 2013 Intel

/* lib-header.h. */
struct Data {
 int i;
 int j;
};

extern struct Data global_data;
void function(struct Data *data);

/* lib-source.c */

struct Data global_data = { 1 };
void function(struct Data *data)
{
}

Example: simple C library (C++ comes later)

Could be “B” too

$ gcc -c /tmp/lib-source.c
$ nm lib-source.o
00000000 T function
00000000 D global_data

21

© 2013 Intel

No public symbol is removed

• Easy to do

• Do not remove any variables or functions that exist

• Do not change any variable or function in a way that would
cause its external (mangled) name to change

• In our example, we cannot:
‒ Remove either the function “function” or the variable “global_data”

22

© 2013 Intel

All functions retain their properties

• The C++ language helps you
‒ This requirement is mostly fulfilled by the previous and next requirements
‒ If the data types retain their properties
‒ And if the mangled name of a function is retained
‒ The function retains its properties

• In C, it’s possible to change the arguments without changing the
external symbol

• In our example:
‒ The function “function” must not read more than 1 argument of integral

type

23

© 2013 Intel

All data types retain their properties

• Can be automated with a C or C++ parser and the compiler

• Best avoided:
‒ Use opaque types / d-pointers / private implementation

• Examples:
‒ Change alignment → user’s structure could add or remove padding
‒ Change non-padded size → the compiler is allowed to use tail-padding
‒ (C++) Make non-POD → user’s structure becomes non-POD too

• In our example, we cannot:
‒ Reorder the members in the struct
‒ Remove the members
‒ Place the members in a union with a long long (changes the alignment)

24

© 2013 Intel

And then there’s C++

Life gets more complicated

• External names for all¹
functions are mangled

• External names for all¹
variables in namespaces are
mangled
‒ In some other ABIs, even those in

the base namespace

• Non-POD (Plain Old Data)
aggregates have more rules

1) all except those declared with extern “C”

But we gain too:

• Functions can be overloaded

• Mangled names help in
ensuring binary compatibility
for functions

25

© 2013 Intel

C++ mangled names

IA-64 C++ ABI

• Prefixed by _Z

• Case sensitive

• Doesn’t mangle free variables

• Mangles only what is required
for overloads that can co-exist

Microsoft Visual Studio

• Prefixed by question mark (?)

• Case insensitive

• Mangles free variables

• Mangles everything,
including:
‒ Return type
‒ Struct vs class
‒ Public, protected, private
‒ Near, far, 64-bit pointers
‒ cv-qualifiers

26

© 2013 Intel

/* lib-header.h. */
struct Data {
 int i;
 int j;
};

extern struct Data global_data;
void function(struct Data *data);

/* lib-source.cpp */

struct Data global_data = { 1 };
void function(struct Data *data)
{
}

Example: our library in C++

$ g++ -c /tmp/lib-source.cpp
$ nm lib-source.o
00000000 T _Z8functionP4Data
00000000 D global_data

Note the presence
of “Data”

What works

35

© 2013 Intel

Guidelines

• Don’t expose what you don’t need

• Be conservative in what you change
‒ Follow the “Binary Compatibility with C++”[1] guidebook

• Use automated test tools

[1] http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

36

© 2013 Intel

Minimal exported API

• Design a minimal API
‒ If you’re unsure about something, don’t include it (yet)
‒ Limit exports by using ELF symbol visibility:

-fvisibility=hidden -fvisibility-inlines-hidden
__attribute__((visibility(“default”)))

• Use opaque or simple types
‒ Private implementation, d-pointers

• Use an API based on functions
‒ Avoid exported variables
‒ Avoid returning pointers or C++ references to internal variables

37

© 2013 Intel

Why functions and private implementations?

In C

• Use opaque types
typedef struct _GDir GDir;

• Can’t be constructed by the
user – always passed by
pointer

• Free to be changed at will

In C++

• Use private implementation

• Your public types won’t
change much or at all
‒ Lowers the risk of changing the

type’s properties

• You can freely change the
private implementation

• Adding new functions is easier
than modifying the public type

Forbidden!

C99 7.1.3p1: “All identifiers that begin with an underscore and either an uppercase letter or
another underscore are always reserved for any use”

38

© 2013 Intel

Changing non-virtual functions¹ (C and C++)

You can

• Add a new function

• De-inline an existing function
‒ If it’s acceptable that the old copy

be run

• Remove a private function
‒ If it has never been called in an

inline function, ever

• (C++) Change default
parameters

You cannot

• Unexport or remove public
functions

• Inline an existing function

• (C) Change the parameter so
it would be passed differently

• (C++) Change its signature:
‒ Change or add parameters
‒ Change cv-qualifier
‒ Change access rights
‒ Change return type

1) includes all C functions as well as C++ functions with extern “C”

39

© 2013 Intel

Changing virtual functions (C++ only)

You can

• Override an existing virtual
‒ Only from primary, non-virtual base

• Add a new virtual to a leaf
(final) class

You cannot

• Add or remove a virtual to a
non-final class

• Change the order of the
declarations

• Add a virtual to a class that
had none

40

© 2013 Intel

“Anchoring” the virtual table (C++ only)

• Make sure there’s one non-inline virtual
‒ Preferably the destructor

• Avoid virtuals in template classes

41

© 2013 Intel

Changing non-static members in aggregates
(C and C++)

You can

• Rename private members¹

• Repurpose private members²

• Add new members to the end,
provided the struct is:
‒ POD (C++98 and all C structs)
‒ Standard-layout (C++11)

• and:
‒ (C++) The constructor is private; OR
‒ The struct has a member containing

its size

You cannot

• Reorder public members in any
way

• Remove members

You should not

• (C++) Change member access
privileges

• (C++) Add a reference or const
or non-POD member to a struct
without one

1) provided the class has no friends; 2) provided old inline functions still work

42

© 2013 Intel

Testing compliance

• Run automated tests frequently

• Run full tests at least once before the release

• On Windows: use the exports file

• On Unix: use nm, otool (Mac), readelf (ELF systems)

• GCC: use -fdump-class-hierarchy

• Everywhere: use the Linux Foundation’s ABI Compliance
Checker[1]
‒ Confirmed to run on Mac, Windows and FreeBSD

[1] http://ispras.linuxbase.org/index.php/ABI_compliance_checker

43

© 2013 Intel

Manual checking before release

• Do a “header diff”

• git diff --diff-filter=M oldtag -- *.h
‒ Manually exclude headers that aren’t installed
‒ Or obtain the list of installed headers from your buildsystem

44

© 2013 Intel

Be careful with false positives

• You probably want a white and black list

• White-list your library’s own API

• Black-list “leaked” symbols from other libraries
‒ Inlines and “unanchored” virtual tables

45

© 2013 Intel

Further: experimental API

• Don’t do it like ICU

• Place it in a separate library

• In fact, place it in a separate source release
‒ Keeps Linux distributions happy

46

© 2013 Intel

Further: breaking binary compatibility

• Announce in well in advance

• Keep previous version maintained for longer than usual

• Try to keep source compatibility

• Change your library names (ELF soname)

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

47

© 2013 Intel

Resources

• Binary compatibility guide in KDE Techbase:
‒ http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++
‒ Examples: http://techbase.kde.org/Policies/Binary_Compatibility_Examples

• Calling convention article (includes MSVC, Sun CC):
‒ http://www.agner.org/optimize/calling_conventions.pdf

• IA-64 / Cross-platform C++ ABI:
‒ http://mentorembedded.github.io/cxx-abi/abi.html
‒ http://refspecs.linux-foundation.org/cxxabi-1.86.html

• “How to Write Shared Libraries”, by Ulrich Drepper
‒ http://www.akkadia.org/drepper/dsohowto.pdf

• libabc
‒ https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git

Thiago Macieira

thiago.macieira@intel.com

	This is an Example of a Presentation Title Flowing on to Three Lines
	Basic Text
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

