Binary compatibility for
library developers

Thiago Macieira, Qt Core Maintainer

LinuxCon North America,
New Orleans, Sept. 2013

ENeesmee- v ST e xen o U PINPOFENOLINUX KE

INTEL LINUX GRAPHICS SYNCEVOLUTIONSIMPLE FIRMWARE INTERFACE (SFI) ENTERPRISE SECURITY IN

Who am 1?

* Open Source developer for 15 years
* C++ developer for 13 years

* Software Architect at Intel’s Open Source Technology
Center (OTC)

* Maintainer of two modules in the Qt Project
QtCore and QtDBus

* MBA and double degree in Engineering

* Previously, led the “Qt Open Governance” project

© 2013 Intel

Definitions

* Binary compatibility

Source compatibility

Behaviour compatibility

Bug compatibility

© 2013 Intel

Binary compatibility

Two libraries are binary compatible with each other if:

* Programs compiled against one will load and run correctly*
against the other

* by some definition of “correct”

© 2013 Intel

Source compatibility

Two libraries are source compatible with each other if:

* Source code written against one will compile without changes
against the other

© 2013 Intel

Behaviour and bug compatibility

Two libraries are Two libraries are bug-
behaviour-compatible with compatible with each other
each other if: if:
* The program will exhibit the * Expanded version of

same behaviour with either behaviour compatibility to

library include buggy behaviour

© 2013 Intel

Forwards and backwards

Depends on the point of view

* Backwards compatibility:
newer version retains compatibility with older version
You can upgrade the library

* Forwards compatibility:
older version “foreshadows” compatibility with newer version
You can downgrade the library

© 2013 Intel

This presentation focuses on
* Backwards binary compatibility

* This depends on the ABI
Will focus on the System V ELF ABI for Linux and I1A-64 C++ ABI

© 2013 Intel

Why you should care

Library used by libraries Library used by anything

* They expose your APl in their ¢ Upgrading parts of the system
API

* Their users might want to use
a newer version of your library

* Large, complex project

© 2013 Intel

14

Project with 2 modules: initial state

© 2013 Intel

Mod 1

Your lib

Data
exchange

=)

Mod 2

Your lib

Lib is upgraded in one module

Mod 1 Mod 2
(recompiled)
Data
exchange
o ||

Does this still load?

© 2013 Intel

Co-existing libraries

Mod 1 Mod 2

Data
exchange

Does it still work?

© 2013 Intel

If you’re developing an application...
* This does not apply to you

* Except if the application has plugins o o
~ The application has libraries

* Or if it has independent modules

© 2013 Intel

The detalls

Binary compatibility requires...

* No publict symbol be removed

* All publict functions retain retain their properties

Which arguments are passed in registers, which are passed on the stack,
implicit arguments, argument count, etc.

* All publict structures retain their layout and properties

For both C and C++ aggregates: sizeof, alignof, order & type of publicly-
accessible members, etc.

For C++ aggregates: dsize, nvsize, PODness, etc.

©2013Intel 1) Symbols intentionally made public as part of the API plus private symbols used in inline functions

Example: simple C library (C++ comes later)

/* lib-header.h. =%/
struct Data {

int 1i;

int j;

1

extern struct Data global_data;
void function(struct Data *data);

/* lib-source.c */

struct Data global_data = { 1 };
void function(struct Data *data)

{
b

$ gcc -c /tmp/lib-source.c
$ nm lib-source.o

00000000 T function
00000000 D global_data

Could be “B” too

© 2013 Intel

No public symbol is removed

* Easy to do
* Do not remove any variables or functions that exist

* Do not change any variable or function in a way that would
cause its external (mangled) name to change

* In our example, we cannot:
Remove either the function “function” or the variable “global _data”

© 2013 Intel

All functions retain their properties

* The C++ language helps you
This requirement is mostly fulfilled by the previous and next requirements
If the data types retain their properties
And if the mangled name of a function is retained
The function retains its properties

* In C, it’s possible to change the arguments without changing the
external symbol

* In our example:

The function “function” must not read more than 1 argument of integral
type

© 2013 Intel

All data types retain their properties

* Can be automated with a C or C++ parser and the compiler

* Best avoided:
Use opaque types / d-pointers / private implementation

* Examples:
Change alignment — user’s structure could add or remove padding
Change non-padded size — the compiler is allowed to use tail-padding
(C++) Make non-POD - user’s structure becomes non-POD too

* In our example, we cannot:
Reorder the members in the struct
Remove the members
Place the members in a union with a long long (changes the alignment)

© 2013 Intel

And then there’s C++

Life gets more complicated But we gain too:

* External names for all? * Functions can be overloaded
functions are mangled - Mangled names help in

* External names for all* ensuring binary compatibility
variables in namespaces are for functions
mangled

In some other ABIs, even those in
the base namespace

* Non-POD (Plain Old Data)
aggregates have more rules

©2013Intel 1) all except those declared with extern “C”

C++ mangled names

IA-64 C++ ABI Microsoft Visual Studio
* Prefixed by Z * Prefixed by question mark (?)
* Case sensitive * Case Insensitive

* Doesn’t mangle free variables ¢ Mangles free variables

* Mangles only what is required * Mangles everything,
for overloads that can co-exist including:
Return type
Struct vs class
Public, protected, private
Near, far, 64-bit pointers
cv-qualifiers

© 2013 Intel

Example: our library in C++

/* lib-header.h. */ $ g++ -c /tmp/lib-source.cpp
struct Data { $ nm lib-source.o
int i; 00000000 T _Z8functionP4Data
int j; 00000000 D/global_data
};

extern struct Data global_data;
void function(struct Data *data);

Note the presence

/* lib-source. cpp */ Of “Data”

struct Data global_data = { 1 };
void function(struct Data *data)

{
b

© 2013 Intel

What works

Guidelines

* Don’t expose what you don’t need

* Be conservative in what you change
Follow the “Binary Compatibility with C++"[1] guidebook

* Use automated test tools

© 2013 Intel [1] http://techbase.kde.org/Policies/Binary _Compatibility Issues With C++

Minimal exported API

* Design a minimal API
If you're unsure about something, don’t include it (yet)
Limit exports by using ELF symbol visibility:
-fvisibility=hidden -fvisibility-inlines-hidden
_attribute__((visibility(“default”)))

* Use opaque or simple types
Private implementation, d-pointers

* Use an API based on functions
Avoid exported variables
Avoid returning pointers or C++ references to internal variables

© 2013 Intel

Why functions and private implementations?

InC In C++
* Use opaque types * Use private implementation
typedef struct ir GDir;

* Your public types won'’t
Forbidden! @ change much or at all

Lowers the risk of changing the

* Can'’t be constructed by the type’s properties

user — always passed by

pointer * You can freely change the

private implementation

* Free to be changed at will _ _ _ _
* Adding new functions is easier

than modifying the public type

C99 7.1.3p1l: “All identifiers that begin with an underscore and either an uppercase letter or
another underscore are always reserved for any use”

© 2013 Intel

Changing non-virtual functions* (C and C++)

You can You cannot
* Add a new function * Unexport or remove public
functions

* De-inline an existing function
If it's acceptable that the old copy ~ * Inline an existing function

be run
_ _ * (C) Change the parameter so
* Remove a private function it would be passed differently
If it has never been called in an _ _
inline function, ever * (C++) Change its signature:

Change or add parameters
Change cv-qualifier
Change access rights
Change return type

* (C++) Change default
parameters

o2013Intel 1) includes all C functions as well as C++ functions with extern “C”

Changing virtual functions (C++ only)

You can You cannot
* Override an existing virtual * Add or remove a virtual to a
Only from primary, non-virtual base non-final class
* Add a new virtual to a leaf * Change the order of the
(final) class declarations

* Add a virtual to a class that
had none

© 2013 Intel

“Anchoring” the virtual table (C++ only)

* Make sure there’'s one non-inline virtual
Preferably the destructor

* Avoid virtuals in template classes

© 2013 Intel

Changing non-static members in aggregates
(C and C++)

You can You cannot

* Rename private members? * Reorder public members in any

* Repurpose private members? way

* Add new members to the end, * Remove members

provided the struct Is:
POD (C++98 and all C structs)
Standard-layout (C++11) * (C++) Change member access

privileges

You should not

* and:
(C++) The constructor is private; OR » (C++) Add a reference or const
The struct has a member containing or non-POD member to a struct
Its size without one

© 2013 Intel 1) provided the class has no friends; 2) provided old inline functions still work

Testing compliance

* Run automated tests frequently

* Run full tests at least once before the release

* On Windows: use the exports file

* On Unix: use nm, otool (Mac), readelf (ELF systems)
* GCC: use -fdump-class-hierarchy

* Everywhere: use the Linux Foundation’s ABI Compliance
Checker[1]

Confirmed to run on Mac, Windows and FreeBSD

© 2013 Intel [1] http://ispras.linuxbase.org/index.php/ABI_compliance_checker

Manual checking before release
* Do a “header diff”

egit diff --diff-filter=M oldtag -- *.h
Manually exclude headers that aren’t installed
Or obtain the list of installed headers from your buildsystem

© 2013 Intel

Be careful with false positives

* You probably want a white and black list
* White-list your library’s own API

* Black-list “leaked” symbols from other libraries
Inlines and “unanchored” virtual tables

© 2013 Intel

Further: experimental API

* Don'tdo it like ICU
* Place it in a separate library

* In fact, place it in a separate source release
Keeps Linux distributions happy

© 2013 Intel

Further: breaking binary compatibility

* Announce in well in advance

* Keep previous version maintained for longer than usual
* Try to keep source compatibility

* Change your library names (ELF soname)

© 2013 Intel

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

Resources

* Binary compatibility guide in KDE Techbase:
http://techbase.kde.org/Policies/Binary _Compatibility Issues_With C++
Examples: http://techbase.kde.org/Policies/Binary Compatibility Examples

* Calling convention article (includes MSVC, Sun CC):
http://www.agner.org/optimize/calling_conventions.pdf

* |A-64 / Cross-platform C++ ABI:
http://mentorembedded.github.io/cxx-abi/abi.html
http://refspecs.linux-foundation.org/cxxabi-1.86.html

* “How to Write Shared Libraries”, by Ulrich Drepper
http://www.akkadia.org/drepper/dsohowto.pdf

* libabc
https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.qgit

© 2013 Intel

Thiago Macieira

thiago.macieira@intel.com

INTEL OPEN SOURCE
TECHNOLOGY CENTER

e L retess 0| DNPSELINUX KERNEL

SYNCEVOLUTIONSIMPLE FIRMWARE INTERFACE (SFI) ENTERPRISE SECURITY INFRASTRUCTURE

	This is an Example of a Presentation Title Flowing on to Three Lines
	Basic Text
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

