
F# Cheatsheet
This cheatsheet aims to succinctly cover the most important aspects of F# 8.0.

The Microsoft
F# Documentation
is complete and authoritative and has received a lot of love in recent
years; it's well worth the time investment to read. Only after you've got the lowdown here of course ;)

This guide is a community effort.
If you have any comments, corrections, or suggested additions,
please open an issue or send a pull request to
https://github.com/fsprojects/fsharp-cheatsheet.
Questions are best addressed via the
F# slack
or the
F# discord.

Comments

Strings

Basic Types and Literals

Functions
let bindings

Pipe and Composition Operators

Anonymous functions
_.Property shorthand

unit Type

Signatures and Explicit Typing

Recursive Functions
TailCallAttribute

Mutually Recursive Functions

Statically Resolved Type Parameters

Collections
Lists

Arrays

Sequences

Collection comprehension

Data Types
Tuples

Records

Anonymous Records

Discriminated Unions

Pattern Matching
when Guard clauses

Pattern matching function

Exceptions
Try..With

Try..Finally

https://learn.microsoft.com/en-us/dotnet/fsharp/
https://github.com/fsprojects/fsharp-cheatsheet
https://fsharp.org/guides/slack
https://discord.me/fsharp

Classes and Inheritance

Interfaces and Object Expressions

Active Patterns
Single-case active patterns

Complete active patterns

Partial active patterns

Asynchronous Programming
.NET Tasks

Async Computations
Creation / Composition

Executing

Cancellation
.NET Tasks

Async

More to Explore

Code Organization
Modules

Namespaces

Open and AutoOpen

Accessibility Modifiers

Smart Constructors

Recursive Reference

Compiler Directives
time

load

Referencing packages or assemblies in a script

Other important directives

Comments
Block comments are placed between (* and *) . Line comments start from // and continue until
the end of the line.

(* This is block comment *)

// And this is a line comment

XML doc comments come after /// allowing us to use XML tags to generate documentation.

/// Double a number and add 1

let myFunction n = n * 2 + 1

Strings
F# string type is an alias for System.String type.

// Create a string using string concatenation

let hello = "Hello" + " World"

Use verbatim strings preceded by @ symbol to avoid escaping control characters (except escaping "

by "").

let verbatimXml = @"<book title=""Paradise Lost"">"

We don't even have to escape " with triple-quoted strings.

let tripleXml = """<book title="Paradise Lost">"""

Backslash strings indent string contents by stripping leading spaces.

let poem =

 "The lesser world was daubed\n\
 By a colorist of modest skill\n\

 A master limned you in the finest inks\n\

 And with a fresh-cut quill."

String Slicing is supported by using [start..end] syntax.

let str = "Hello World"

let firstWord = str[0..4] // "Hello"
let lastWord = str[6..] // "World"

String Interpolation is supported by prefixing the string with $ symbol. All of these will output "Hello"
\ World! :

let expr = "Hello"
printfn " \"%s\" \\ World!" expr

printfn $" \"{expr}\" \\ World!"

printfn $" \"%s{expr}\" \\ World!" // using a format specifier

printfn $@" ""{expr}"" \ World!"
printfn $@" ""%s{expr}"" \ World!"

printf $@" ""%s{expr}"" \ World!" // no newline

See Strings (MS Learn) for more on escape characters, byte arrays, and format specifiers.

Basic Types and Literals

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/strings

Use the let keyword to define values. Values are immutable by default, but can be modified if
specified with the mutable keyword.

let myStringValue = "my string"
let myIntValue = 10

let myExplicitlyTypedIntValue: int = 10

let mutable myMutableInt = 10

myMutableInt <- 11 // use <- arrow to assign a new value

Integer Prefixes for hexadecimal, octal, or binary

let numbers = (0x9F, 0o77, 0b1010) // (159, 63, 10)

Literal Type Suffixes for integers, floats, decimals, and ascii arrays

let (sbyte, byte) = (55y, 55uy) // 8-bit integer

let (short, ushort) = (50s, 50us) // 16-bit integer

let (int, uint) = (50, 50u) // 32-bit integer

let (long, ulong) = (50L, 50uL) // 64-bit integer

let bigInt = 9999999999999I // System.Numerics.BigInteger

let float = 50.0f // signed 32-bit float

let double = 50.0 // signed 64-bit float

let scientific = 2.3E+32 // signed 64-bit float

let decimal = 50.0m // signed 128-bit decimal

let byte = 'a'B // ascii character; 97uy

let byteArray = "text"B // ascii string; [|116uy; 101uy; 120uy; 116uy|]

Primes (or a tick ' at the end of a label name) are idiomatic to functional languages and are included
in F#. They are part of the identifier's name and simply indicate to the developer a variation of an
existing value or function. For example:

let x = 5

let x' = x + 1

let x'' = x' + 1

See Literals (MS Learn) for complete reference.

Functions

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/literals

let bindings

Use the let keyword to define named functions.

let add n1 n2 = n1 + n2

let subtract n1 n2 = n1 - n2
let negate num = -1 * num

let print num = printfn $"The number is: {num}"

Pipe and Composition Operators

Pipe operator |> is used to chain functions and arguments together.

let addTwoSubtractTwoNegateAndPrint num =

 num |> add 2 |> subtract 2 |> negate |> print

Composition operator >> is used to compose functions:

let addTwoSubtractTwoNegateAndPrint' =

 add 2 >> subtract 2 >> negate >> print

Caution: The output is the last argument to the next function.

// `addTwoSubtractTwoNegateAndPrint 10` becomes:
10

|> add 2 // 2 + 10 = 12

|> subtract 2 // 2 - 12 = -10
|> negate // -1 * -10 = 10

|> print // "The number is 10"

Anonymous functions

Anonymous, or "lambda" functions, are denoted by the fun keyword and the arrow operator -> .

let isDescending xs =

 xs

 |> List.pairwise

 |> List.forAll (fun (x, y) -> x > y)

let suspiciousRecords =

 records
 |> Seq.filter (fun x -> x.Age >= 150)

_.Property shorthand

If the lambda function has a single argument that is used in an atomic expression, the following
shorthand has been available since F# 8:

let names =

 people
 |> List.map (fun person -> person.Name) // regular lambda expression

let names' =

 people
 |> List.map _.Name // _.Property shorthand

You may chain properties and methods together, so long as there is no "space" in the expression. E.g.:

let uppercaseNames =

 people |> List.map _.Name.ToUpperInvariant()

unit Type

The unit type is a type that indicates the absence of a specific value. It is represented by () .
The
most common use is when you have a function that receives no parameters, but you need it to evaluate
on every call:

// Without unit, DateTime.Now is only evaluated once. The return value will never change.

let getCurrentDateTime = DateTime.Now

// This version evalautes DateTime.Now every time you call it with a `unit` argument.
let getCurrentDateTime2 () = DateTime.Now

// How to call the function:
let startTime = getCurrentDateTime2()

Signatures and Explicit Typing

Function signatures are useful for quickly learning the input and output of functions. The last type is the
return type and all preceding types are the input types.

int -> string // this defines a function that receives an integer;

int -> int -> string // two integer inputs; returns a string

unit -> string // unit; returns a string
string -> unit // accepts a string; no return

(int * string) -> string -> string // a tuple of int and string, and a string inputs; re

Most of the time, the compiler can determine the type of a parameter, but there are cases may you wish
to be explicit or the compiler needs a hand.
Here is a function with a signature string -> char ->
int and the input and return types are explicit:

let countWordsStartingWithLetter (theString: string) (theLetter: char) : int =

 theString.Split ' '
 |> Seq.where (fun (word: string) -> word.StartsWith theLetter) // explicit typing in

 |> Seq.length

Examples of functions that take unit as arguments and return different Collection types.

let getList (): int list = ... // unit -> int list

let getArray (): int[] = ...

let getSeq (): seq<int> = ...

A complex declaration with an Anonymous Record:

let anonRecordFunc (record: {| Count: int; LeftAndRight: bigint * bigint |}) =

 ...

Recursive Functions

The rec keyword is used together with the let keyword to define a recursive function:

let rec fact x =

 if x < 1 then 1

 else x * fact (x - 1)

TailCallAttribute

In tail recursive functions, the recursive call is the final operation in the function, with its result directly
returned without a nested function call (and the stack usage that implies). This pattern allows the
compiler to instead generate a loop equivalent of the nested invocation by reusing the current stack
frame instead of allocating a new one for each call.

As a guardrail, you can use the "TailCall" attribute (since F# 8).

By default, the compiler will emit a warning if this attribute is used with a function that is not properly tail
recursive. It is typically a good idea to elevate this warning to an error, either in your project file, or by
using a compiler option.

If we add this attribute to the previous example:

[<TailCall>]

let rec fact x =

 if x < 1 then 1

 else x * fact (x - 1)

...the compiler gives us this warning:

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/compiler-messages/

Warning FS3569 : The member or function 'fact' has the 'TailCallAttribute' attribute, but

However, when refactored to be properly tail recursive by using an accumulator parameter, the warning
goes away:

[<TailCall>]
let rec factTail acc x =

 if x < 1 then acc

 else factTail (acc * x) (x - 1)

Mutually Recursive Functions

Pairs or groups of functions that call each other are indicated by both rec and and keywords:

let rec even x =

 if x = 0 then true
 else odd (x - 1)

and odd x =
 if x = 0 then false

 else even (x - 1)

Statically Resolved Type Parameters

A statically resolved type parameter is a type parameter that is replaced with an actual type at compile
time instead of at run time. They are primarily useful in conjunction with member constraints.

let inline add x y = x + y

let integerAdd = add 1 2
let floatAdd = add 1.0f 2.0f // without `inline` on `add` function, this would cause a ty

type RequestA = { Id: string; StringValue: string }

type RequestB = { Id: string; IntValue: int }

let requestA: RequestA = { Id = "A"; StringValue = "Value" }

let requestB: RequestB = { Id = "B"; IntValue = 42 }

let inline getId<'T when 'T : (member Id: string)> (x: 'T) = x.Id

let idA = getId requestA // "A"
let idB = getId requestB // "B"

See Statically Resolved Type Parameters (MS Learn) and Constraints (MS Learn) for more examples.

Collections

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/statically-resolved-type-parameters
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/constraints

Lists

A list is an immutable collection of elements of the same type. Implemented internally as a linked list.

// Create

let list1 = ["a"; "b"]

let list2 =
 [1

 2]

let list3 = "c" :: list1 // prepending; ["c"; "a"; "b"]
let list4 = list1 @ list3 // concat; ["a"; "b"; "c"; "a"; "b"]

let list5 = [1..2..9] // start..increment..last; [1; 3; 5; 7; 9]

// Slicing is inclusive
let firstTwo = list5[0..1] // [1; 3]

// Pattern matching
match myList with

| [] -> ... // empty list

| [3] -> ... // a single item, which is '3'
| [_; 4] -> ... // two items, second item is '4'

| head :: tail -> ... // cons pattern; matches non-empty. `head` is the first item, `tai

// Tail-recursion with a list, using cons pattern
let sumEachItem (myList:int list) =

 match myList with

 | [] -> 0
 | head :: tail -> head + sumEachItem tail

See the List Module for built-in functions.

Arrays

Arrays are fixed-size, zero-based, collections of consecutive data elements maintained as one block of
memory. They are mutable; individual elements can be changed.

// Create

let array1 = [| "a"; "b"; "c" |]

let array2 =
 [| 1

 2 |]

let array3 = [| 1..2..9 |] // start..increment..last; [| 1; 3; 5; 7; 9 |]

// Indexed access

let first = array1[0] // "a"

// Slicing is inclusive; [| "a"; "b" |]

let firstTwo = array1[0..1]

// Assignment using `<-`

array1[1] <- "d" // [| "a"; "d"; "c" |]

// Pattern matching

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html

match myArray with

| [||] -> ... // match an empty array
| [| 3 |] -> ... // match array with single 3 item

| [| _; 4 |] -> ... // match array with 2 items, second item = 4

See the Array Module for built-in functions.

Sequences

A sequence is a logical series of elements of the same type. seq<'t> is an alias for
System.Collections.Generic.IEnumerable<'t> .

// Create
let seq1 = { 1; 2 }

let seq2 = seq {

 1

 2 }
let seq3 = seq { 1..2..9 } // start..increment..last; 1,3,5,7,9

See the Seq Module for built-in functions.

Collection comprehension

Computed expressions with -> . Results in 1, 3, 5, 7, 9

let listComp = [for i in 0..4 -> 2 * i + 1]
let arrayComp = [| for i in 0..4 -> 2 * i + 1 |]

let seqComp = seq { for i in 0..4 -> 2 * i + 1 }

Using computed expressions with yield and yield! . (yield is optional in a do , but is being
used explicitly here):

let comprehendedList = [// [1;3;5;7;9]

 for i in 0..4 do
 yield 2 * i + 1

]

let comprehendedArray = [| // [| 1;3;5;7;9;1;3;5;7;9 |]

 for i in 0..4 do
 yield 2 * i + 1

 yield! comprehendedList

 |]
let comprehendedSequence = seq { // seq { 1;3;5;7;9;1;3;5;7;9;.... }

 while true do

 yield! listWithYield

 }

Data Types

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html

Tuples

A tuple is a grouping of unnamed but ordered values, possibly of different types:

// Construction

let numberAndWord = (1, "Hello")

let numberAndWordAndNow = (1, "Hello", System.DateTime.Now)

// Deconstruction

let (number, word) = numberAndWord
let (_, _, now) = numberAndWordAndNow

// fst and snd functions for two-item tuples:

let number = fst numberAndWord
let word = snd numberAndWord

// Pattern matching
let printNumberAndWord numberAndWord =

 match numberAndWord with

 | (1, word) -> printfn $"One: %s{word}"
 | (2, word) -> printfn $"Two: %s{word}"

 | (_, word) -> printfn $"Number: %s{word}"

// Function parameter deconstruction
let printNumberAndWord' (number, word) = printfn $"%d{number}: %s{word}"

In C#, if a method has an out parameter (e.g. DateTime.TryParse) the out result will be part of a
tuple.

let (success, outParsedDateTime) = System.DateTime.TryParse("2001/02/06")

See Tuples (MS Learn) for learn more.

Records

Records represent aggregates of named values. They are sealed classes with extra toppings: default
immutability, structural equality, and pattern matching support.

// Declare

type Person = { Name: string; Age: int }

type Car =
 { Make: string

 Model: string

 Year: int }

// Create

let paul = { Name = "Paul"; Age = 28 }

// Copy and Update

let paulsTwin = { paul with Name = "Jim" }

https://learn.microsoft.com/en-us/dotnet/api/system.datetime.tryparse
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/tuples

// Built-in equality

let evilPaul = { Name = "Paul"; Age = 28 }
paul = evilPaul // true

// Pattern matching

let isPaul person =
 match person with

 | { Name = "Paul" } -> true

 | _ -> false

See Records (MS Learn) to learn more; including struct -based records.

Anonymous Records

Anonymous Records represent aggregates of named values, but do not need declaring before use.

// Create

let anonRecord1 = {| Name = "Don Syme"; Language = "F#"; Age = 999 |}

// Copy and Update

let anonRecord2 = {| anonRecord1 with Name = "Mads Torgersen"; Language = "C#" |}

let getCircleStats (radius: float) =

 {| Radius = radius

 Diameter = radius * 2.0
 Area = System.Math.PI * (radius ** 2.0)

 Circumference = 2.0 * System.Math.PI * radius |}

// Signature

let printCircleStats (circle: {| Radius: float; Area: float; Circumference: float; Diamet

 printfn $"Circle with R=%f{circle.Radius}; D=%f{circle.Diameter}; A=%f{circle.Area};

let cc = getCircleStats 2.0

printCircleStats cc

See Anonymous Records (MS Learn) to learn more; including struct -based anonymous records.

Discriminated Unions

Discriminated unions (DU) provide support for values that can be one of a number of named cases,
each possibly with different values and types.

// Declaration

type Interaction =

 | Keyboard of char
 | KeyboardWithModifier of char * modifier: System.ConsoleModifiers

 | MouseClick of countOfClicks: int

// Create

let interaction1 = MouseClick 1

let interaction2 = MouseClick (countOfClicks = 2)
let interaction3 = KeyboardWithModifier ('c', System.ConsoleModifiers.Control)

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/records
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/anonymous-records

// Pattern matching
match interaction3 with

| Keyboard chr -> $"Character: {chr}"

| KeyboardWithModifier (chr, modifier) -> $"Character: {modifier}+{chr}"

| MouseClick (countOfClicks = 1) -> "Click"
| MouseClick (countOfClicks = x) -> $"Clicked: {x}"

Generics

type Tree<'T> =

 | Node of Tree<'T> * 'T * Tree<'T>
 | Leaf

let rec depth =
 match depth with

 | Node (l, _, r) -> 1 + max (depth l) (depth r)

 | Leaf -> 0

F# Core has built-in discriminated unions for error handling, e.g., option and Result .

let optionPatternMatch input =

 match input with
 | Some value -> printfn $"input is %d{value}"

 | None -> printfn "input is missing"

let resultPatternMatch input =

 match input with

 | Ok value -> $"Input: %d{value}"

 | Error value -> $"Error: %d{value}"

Single-case discriminated unions are often used to create type-safe abstractions with pattern matching
support:

type OrderId = Order of string

// Create a DU value
let orderId = Order "12"

// Use pattern matching to deconstruct single-case DU
let (Order id) = orderId // id = "12"

See Discriminated Unions to learn more.

Pattern Matching
Patterns are a core concept that makes the F# language and other MLs very powerful.
They are found
in let bindings, match expressions, lambda expressions, and exceptions.

The matches are evaluated top-to-bottom, left-to-right; and the first one to match is selected.

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/results
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions

Examples of pattern matching in Collections and Data Types can be found in their corresponding
sections.
Here are some additional patterns:

match intValue with

| 0 -> "Zero" // constant pattern
| 1 | 2 -> "One or Two" // OR pattern with constants

| x -> $"Something else: {x}" // variable pattern; assign value to x

match tupleValue with
| (_ ,3) & (x, y) -> $"{x}, 3" // AND pattern with a constant and variable; matches 3 an

| _ -> "Wildcard" // underscore matches anything

when Guard clauses

In order to match sophisticated inputs, one can use when to create filters, or guards, on patterns:

match num with
| 0 -> 0

| x when x < 0 -> -1

| x -> 1

Pattern matching function

The let..match..with statement can be simplified using just the function statement:

let filterNumbers num =
 match num with

 | 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"

 | a -> printfn "%d" a

let filterNumbers' = // the parameter and `match num with` are combined

 function | 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"
 | a -> printfn "%d" a

See Pattern Matching (MS Learn) to learn more.

Exceptions

Try..With

An illustrative example with: custom F# exception creation, all exception aliases, raise() usage, and
an exhaustive demonstration of the exception handler patterns:

open System

exception MyException of int * string // (1)

let guard = true

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching

try
 failwith "Message" // throws a System.Exception (aka exn)

 nullArg "ArgumentName" // throws a System.ArgumentNullException

 invalidArg "ArgumentName" "Message" // throws a System.ArgumentException

 invalidOp "Message" // throws a System.InvalidOperation

 raise(NotImplementedException("Message")) // throws a .NET exception (2)

 raise(MyException(0, "Message")) // throws an F# exception (2)

 true // (3)

with
| :? ArgumentNullException -> printfn "NullException"; false // (3)

| :? ArgumentException as ex -> printfn $"{ex.Message}"; false // (4)

| :? InvalidOperationException as ex when guard -> printfn $"{ex.Message}"; reraise() //

| MyException(num, str) when guard -> printfn $"{num}, {str}"; false // (5)
| MyException(num, str) -> printfn $"{num}, {str}"; reraise() //

| ex when guard -> printfn $"{ex.Message}"; false

| ex -> printfn $"{ex.Message}"; false

1. define your own F# exception types with exception , a new type that will inherit from

System.Exception ;

2. use raise() to throw an F# or .NET exception;

3. the entire try..with expression must evaluate to the same type, in this example: bool;

4. ArgumentNullException inherits from ArgumentException , so ArgumentException must follow
after;

5. support for when guards;

6. use reraise() to re-throw an exception; works with both .NET and F# exceptions

The difference between F# and .NET exceptions is how they are created and how they can be
handled.

Try..Finally

The try..finally expression enables you to execute clean-up code even if a block of code throws

an exception. Here's an example that also defines custom exceptions.

exception InnerError of string
exception OuterError of string

let handleErrors x y =
 try

 try

 if x = y then raise (InnerError("inner"))

 else raise (OuterError("outer"))
 with

 | InnerError str -> printfn "Error1 %s" str

 finally
 printfn "Always print this."

Note that finally does not follow with . try..with and try..finally are separate expressions.

Classes and Inheritance
This example is a basic class with (1) local let bindings, (2) properties, (3) methods, and (4) static
members.

type Vector(x: float, y: float) =
 let mag = sqrt(x * x + y * y) // (1)

 member _.X = x // (2)

 member _.Y = y
 member _.Mag = mag

 member _.Scale(s) = // (3)

 Vector(x * s, y * s)

 static member (+) (a : Vector, b : Vector) = // (4)
 Vector(a.X + b.X, a.Y + b.Y)

Call a base class from a derived one.

type Animal() =

 member _.Rest() = ()

type Dog() =

 inherit Animal()
 member _.Run() =

 base.Rest()

Upcasting is denoted by :> operator.

let dog = Dog()

let animal = dog :> Animal

Dynamic downcasting (:?>) might throw an InvalidCastException if the cast doesn't succeed at
runtime.

let shouldBeADog = animal :?> Dog

Interfaces and Object Expressions
Declare IVector interface and implement it in Vector .

type IVector =
 abstract Scale : float -> IVector

type Vector(x, y) =

 interface IVector with
 member _.Scale(s) =

 Vector(x * s, y * s) :> IVector

 member _.X = x

 member _.Y = y

Another way of implementing interfaces is to use object expressions.

type ICustomer =

 abstract Name : string

 abstract Age : int

let createCustomer name age =

 { new ICustomer with

 member _.Name = name
 member _.Age = age }

Active Patterns

Single-case active patterns

Single-case active patterns can be thought of as a simple way to convert data to a new form.

// Basic

let (|EmailDomain|) email =
 let match' = Regex.Match(email, "@(.*)$")

 if match'.Success

 then match'.Groups[1].ToString()
 else ""

let (EmailDomain emailDomain) = "yennefer@aretuza.org" // emailDomain = 'aretuza.org'

// As Parameters

open System.Numerics

let (|Real|) (x: Complex) =

 (x.Real, x.Imaginary)
let addReal (Real (real1, _)) (Real (real2, _)) = // conversion done in the parameters

 real1 + real2

let addRealOut = addReal Complex.ImaginaryOne Complex.ImaginaryOne

// Parameterized

let (|Default|) onNone value =
 match value with

 | None -> onNone

 | Some e -> e

let (Default "random citizen" name) = None // name = "random citizen"
let (Default "random citizen" name) = Some "Steve" // name = "Steve"

Complete active patterns

let (|Even|Odd|) i =

 if i % 2 = 0 then Even else Odd

let testNumber i =

 match i with
 | Even -> printfn "%d is even" i

 | Odd -> printfn "%d is odd" i

let (|Phone|Email|) (s:string) =
 if s.Contains '@' then Email $"Email: {s}" else Phone $"Phone: {s}"

match "yennefer@aretuza.org" with // output: "Email: yennefer@aretuza.org"
| Email email -> printfn $"{email}"

| Phone phone -> printfn $"{phone}"

Partial active patterns

Partial active patterns share the syntax of parameterized patterns, but their active recognizers accept
only one argument.
A Partial active pattern must return an Option<'T> .

let (|DivisibleBy|_|) by n =

 if n % by = 0

 then Some DivisibleBy
 else None

let fizzBuzz = function

 | DivisibleBy 3 & DivisibleBy 5 -> "FizzBuzz"
 | DivisibleBy 3 -> "Fizz"

 | DivisibleBy 5 -> "Buzz"

 | i -> string i

Asynchronous Programming
F# asynchronous programming support consists of two complementary mechanisms::

.NET's Tasks (via task { } expressions). This provides semantics very close to that of C#'s
async / await mechanism, requiring explicit direct management of CancellationToken s.

F# native Async computations (via async { } expressions). Predates Task . Provides intrinsic
CancellationToken propagation.

.NET Tasks

In F#, .NET Tasks can be constructed using the task { } computational expression.
.NET Tasks are
"hot" - they immediately start running. At the first let! or do! , the Task<'T> is returned and
execution continues on the ThreadPool.

open System

open System.Threading

open System.Threading.Tasks

open System.IO

let readFile filename ct = task {

 printfn "Started Reading Task"

 do! Task.Delay((TimeSpan.FromSeconds 5), cancellationToken = ct) // use do! when awa
 let! text = File.ReadAllTextAsync(filename, ct) // use let! when awaiting a Task<'T>

 return text

}

let readFileTask: Task<string> = readFile "myfile.txt" CancellationToken.None // (before

// (readFileTask continues execution on the ThreadPool)

let fileContent = readFileTask.Result // Blocks thread and waits for content. (1)

let fileContent' = readFileTask.Result // Task is already completed, returns same value

(1) .Result used for demonstration only. Read about async/await Best Practices

Async Computations

Async computations were invented before .NET Tasks existed, which is why F# has two core methods
for asynchronous programming. However, async computations did not become obsolete. They offer
another, but different, approach: dataflow.
Async computations are constructed using async { }
expressions, and the Async module is used to compose and execute them.
In contrast to .NET Tasks,

async expressions are "cold" (need to be explicitly started) and every execution propagates a
CancellationToken implicitly.

open System

open System.Threading
open System.IO

let readFile filename = async {
 do! Async.Sleep(TimeSpan.FromSeconds 5) // use do! when awaiting an Async

 let! text = File.ReadAllTextAsync(filename) |> Async.AwaitTask // (1)

 printfn "Finished Reading File"
 return text

}

// compose a new async computation from exising async computations
let readFiles = [readFile "A"; readFile "B"] |> Async.Parallel

// execute async computation
let textOfFiles: string[] = readFiles |> Async.RunSynchronously

// Out: Finished Reading File

// Out: Finished Reading File

// re-execute async computation again

let textOfFiles': string[] = readFiles |> Async.RunSynchronously

// Out: Finished Reading File
// Out: Finished Reading File

(1) As .NET Tasks became the central component of task-based asynchronous programming after F#
Async were introduced, F#'s Async has Async.AwaitTask to map from Task<'T> to Async<'T> . Note
that cancellation and exception handling require special considerations.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming#async-all-the-way
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#section3
https://github.com/fsprojects/FSharp.Control.TaskSeq/issues/141

Creation / Composition

The Async module has a number of functions to compose and start computations. The full list with
explanations can be found in the Async Type Reference.

Function Description

Async.Ignore Creates an Async<unit> computation from an Async<'T>

Async.Parallel
Composes a new computation from multiple computations, Async<'T> seq ,

and runs them in parallel; it returns all the results in an array Async<'T[]>

Async.Sequential
Composes a new computation from multiple computations, Async<'T> seq ,

and runs them in series; it returns all the results in an array Async<'T[]>

Async.Choice
Composes a new computation from multiple computations, Async<'T

option> seq , and returns the first where 'T' is Some value (all others
running are canceled). If all computations return None then the result is None

For all functions that compose a new computation from children, if any child computations raise an
exception, then the overall computation will trigger an exception. The CancellationToken passed to

the child computations will be triggered, and execution continues when all running children have
cancelled execution.

Executing

Function Description

Async.RunSynchronously Runs an async computation and awaits its result.

Async.StartAsTask
Runs an async computation on the ThreadPool and wraps the
result in a Task<'T> .

Async.StartImmediateAsTask
Runs an async computation, starting immediately on the current
operating system thread, and wraps the result in a Task<'T>

Async.Start
Runs an Async<unit> computation on the ThreadPool (without
observing any exceptions).

Async.StartImmediate
Runs a computation, starting immediately on the current thread
and continuations completing in the ThreadPool.

Cancellation

.NET Tasks

.NET Tasks do not have any intrinsic handling of CancellationToken s; you are responsible for
passing CancellationToken s down the call hierarchy to all sub-Tasks.

open System
open System.Threading

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#section0

open System.Threading.Tasks

let loop (token: CancellationToken) = task {

 for cnt in [0 .. 9] do

 printf $"{cnt}: And..."

 do! Task.Delay((TimeSpan.FromSeconds 2), token) // token is required for Task.De
 printfn "Done"

}

let cts = new CancellationTokenSource (TimeSpan.FromSeconds 5)

let runningLoop = loop cts.Token

try
 runningLoop.GetAwaiter().GetResult() // (1)

with :? OperationCanceledException -> printfn "Canceled"

Output:

0: And...Done

1: And...Done
2: And...Canceled

(1) .GetAwaiter().GetResult() used for demonstration only. Read about async/await Best Practices

Async

Asynchronous computations have the benefit of implicit CancellationToken passing and checking.

open System
open System.Threading

open System.Threading.Tasks

let loop = async {
 for cnt in [0 .. 9] do

 printf $"{cnt}: And..."

 do! Async.Sleep(TimeSpan.FromSeconds 1) // Async.Sleep implicitly receives and c

 let! ct = Async.CancellationToken // when interoperating with Tasks, cancellation

 do! Task.Delay((TimeSpan.FromSeconds 1), cancellationToken = ct) |> Async.AwaitTa

 printfn "Done"

}

let cts = new CancellationTokenSource(TimeSpan.FromSeconds 5)

try

 Async.RunSynchronously (loop, Timeout.Infinite, cts.Token)
with :? OperationCanceledException -> printfn "Canceled"

Output:

0: And...Done

1: And...Done

2: And...Canceled

https://learn.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming#async-all-the-way

All methods for cancellation can be found in the Core Library Documentation

More to Explore

Asynchronous programming is a vast topic. Here are some other resources worth exploring:

Asynchronous Programming in F# - Microsoft's tutorial guide. Recommended as it is up-to-date
and expands on some of the topics here.

Iced Tasks - .NET Tasks start immediately. The IcedTasks library provide additional computational
expressions such as cancellableTask , which combines the benefits of .NET Tasks (natural

interoperation with Task APIs and the performance benefits of the task 's State-Machine based
implementation) with asynchronous expressions (composability, implicit CancellationToken

passing, and the fact that you can invoke (or retry) a given computation multiple times).

Asynchronous Programming Best Practices by David Fowler - offers a fantastic list of good
practices for .NET Task usage.

Code Organization

Modules

Modules are key building blocks for grouping related code; they can contain types , let bindings, or

(nested) sub module s.
Identifiers within modules can be referenced using dot notation, or you can
bring them into scope via the open keyword.
Illustrative-only example:

module Money =
 type CardInfo =

 { number: string

 expiration: int * int }

 type Payment =

 | Card of CardInfo
 | Cash of int

 module Functions =

 let validCard (cardNumber: string) =
 cardNumber.Length = 16 && (cardNumber[0], ['3';'4';'5';'6']) ||> List.contain

If there is only one module in a file, the module name can be declared at the top, and all code
constructs
within the file will be included in the module s definition (no indentation required).

module Functions // notice there is no '=' when at the top of a file

let sumOfSquares n = seq {1..n} |> Seq.sumBy (fun x -> x * x) // Functions.sumOfSquares

Namespaces

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#section3
https://learn.microsoft.com/en-us/dotnet/fsharp/tutorials/async
https://github.com/TheAngryByrd/IcedTasks?tab=readme-ov-file#icedtasks
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/computation-expressions
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md#table-of-contents

Namespaces are simply dotted names that prefix type and module declarations to allow for
hierarchical scoping.
The first namespace directives must be placed at the top of the file. Subsequent

namespace directives either: (a) create a sub-namespace; or (b) create a new namespace.

namespace MyNamespace

module MyModule = // MyNamspace.MyModule
 let myLet = ... // MyNamspace.MyModule.myLet

namespace MyNamespace.SubNamespace

namespace MyNewNamespace // a new namespace

A top-level module 's namespace can be specified via a dotted prefix:

module MyNamespace.SubNamespace.Functions

Open and AutoOpen

The open keyword can be used on module , namespace , and type .

module Groceries =

 type Fruit =

 | Apple

 | Banana

let fruit1 = Groceries.Banana

open Groceries // module
let fruit2 = Apple

open System.Diagnostics // namespace

let stopwatch = Stopwatch.StartNew() // Stopwatch is accessible

open type System.Text.RegularExpressions.Regex // type
let isHttp url = IsMatch("^https?:", url) // Regex.IsMatch directly accessible

Available to module declarations only, is the AutoOpen attribute, which alleviates the need for an
open .

[<AutoOpen>]
module Groceries =

 type Fruit =

 | Apple

 | Banana

let fruit = Banana

However, AutoOpen should be used cautiously. When an open or AutoOpen is used, all declarations
in the containing element
will be brought into scope. This can lead to shadowing; where the last
named declaration replaces all prior identically-named declarations. There is no error - or even a
warning - in F#, when shadowing occurs.
A coding convention (MS Learn) exists for open
statements

to avoid pitfalls; AutoOpen would sidestep this.

Accessibility Modifiers

F# supports public , private (limiting access to its containing type or module) and internal

(limiting access to its containing assembly).
They can be applied to module , let , member , type ,
new (MS Learn), and val (MS Learn).

With the exception of let bindings in a class type , everything defaults to public .

Element Example with Modifier

Module module internal MyModule =

Module .. let let private value =

Record type internal MyRecord = { id: int }

Record ctor type MyRecord = private { id: int }

Discriminated Union type internal MyDiscUni = A | B

Discriminated Union ctor type MyDiscUni = private A | B

Class type internal MyClass() =

Class ctor type MyClass private () =

Class Additional ctor internal new() = MyClass("defaultValue")

Class .. let Always private. Cannot be overridden

type .. member member private _.TypeMember =

type .. val val internal explicitInt : int

Smart Constructors

Making a primary constructor (ctor) private or internal is a common convention for ensuring value

integrity;
otherwise known as "making illegal states unrepresentable" (YouTube:Effective ML).

Example of Single-case Discriminated Union with a private constructor that constrains a quantity
between 0 and 100:

type UnitQuantity =

 private UnitQuantity of int

module UnitQuantity = // common idiom: type companion module

 let tryCreate qty =

https://en.wikipedia.org/wiki/Variable_shadowing
https://learn.microsoft.com/en-us/dotnet/fsharp/style-guide/conventions#sort-open-statements-topologically
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/classes#constructors
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/members/explicit-fields-the-val-keyword
https://youtu.be/-J8YyfrSwTk?si=ml3AWro6jG77F0YW&t=1080

 if qty < 1 || qty > 100

 then None
 else Some (UnitQuantity qty)

 let value (UnitQuantity uQty) = uQty

 let zero = UnitQuantity 0

...
let unitQtyOpt = UnitQuantity.tryCreate 5

let validQty =
 unitQtyOpt

 |> Option.defaultValue UnitQuantity.zero

Recursive Reference

F#'s type inference and name resolution runs in file and line order. By default, any forward references
are considered errors.
This default provides a single benefit, which can be hard to appreciate initially:
you never need to look beyond the current file for a dependency.
In general this also nudges toward
more careful design and organisation of codebases,
which results in cleaner, maintainable code.
However, in rare cases forward referencing might be needed.
To do this we have rec for module and
namespace ; and and for type and let (Recursive Functions) functions.

module rec CarModule

exception OutOfGasException of Car // Car not defined yet; would be an error

type Car =
 { make: string; model: string; hasGas: bool }

 member self.Drive destination =

 if not self.hasGas
 then raise (OutOfGasException self)

 else ...

type Person =
 { Name: string; Address: Address }

and Address =

 { Line1: string; Line2: string; Occupant: Person }

See Namespaces (MS Learn) and Modules (MS Learn) to learn more.

Compiler Directives

time

The dotnet fsi directive, #time switches on basic metrics covering real time, CPU time, and

garbage collection information.

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/namespaces
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/modules

#time

System.Threading.Thread.Sleep (System.TimeSpan.FromSeconds 1)
#time

Output:

--> Timing now on

Real: 00:00:01.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0

val it: unit = ()
--> Timing now off

load

Load another F# source file into FSI.

#load "../lib/StringParsing.fs"

Referencing packages or assemblies in a script

Reference a .NET assembly (/ symbol is recommended for Mono compatibility).
Reference a .NET
assembly:

#r "../lib/FSharp.Markdown.dll"

Reference a nuget package

#r "nuget:Serilog.Sinks.Console" // latest production release

#r "nuget:FSharp.Data, 6.3.0" // specific version

#r "nuget:Equinox, *-*" // latest version, including `-alpha`, `-rc` version etc

Include a directory in assembly search paths.

#I "../lib"

#r "FSharp.Markdown.dll"

Other important directives

Other important directives are conditional execution in FSI (INTERACTIVE) and querying current
directory (__SOURCE_DIRECTORY__).

#if INTERACTIVE
let path = __SOURCE_DIRECTORY__ + "../lib"

#else

let path = "../../../lib"

#endif

