|
| 1 | +# coding:UTF-8 |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from mf import load_data, save_file, prediction, top_k |
| 5 | + |
| 6 | +def train(V, r, maxCycles, e): |
| 7 | + m, n = np.shape(V) |
| 8 | + # 1、初始化矩阵 |
| 9 | + W = np.mat(np.random.random((m, r))) |
| 10 | + H = np.mat(np.random.random((r, n))) |
| 11 | + |
| 12 | + # 2、非负矩阵分解 |
| 13 | + for step in xrange(maxCycles): |
| 14 | + V_pre = W * H |
| 15 | + E = V - V_pre |
| 16 | + err = 0.0 |
| 17 | + for i in xrange(m): |
| 18 | + for j in xrange(n): |
| 19 | + err += E[i, j] * E[i, j] |
| 20 | + |
| 21 | + if err < e: |
| 22 | + break |
| 23 | + if step % 1000 == 0: |
| 24 | + print "\titer: ", step, " loss: " , err |
| 25 | + |
| 26 | + a = W.T * V |
| 27 | + b = W.T * W * H |
| 28 | + for i_1 in xrange(r): |
| 29 | + for j_1 in xrange(n): |
| 30 | + if b[i_1, j_1] != 0: |
| 31 | + H[i_1, j_1] = H[i_1, j_1] * a[i_1, j_1] / b[i_1, j_1] |
| 32 | + |
| 33 | + c = V * H.T |
| 34 | + d = W * H * H.T |
| 35 | + for i_2 in xrange(m): |
| 36 | + for j_2 in xrange(r): |
| 37 | + if d[i_2, j_2] != 0: |
| 38 | + W[i_2, j_2] = W[i_2, j_2] * c[i_2, j_2] / d[i_2, j_2] |
| 39 | + |
| 40 | + return W, H |
| 41 | + |
| 42 | + |
| 43 | +if __name__ == "__main__": |
| 44 | + # 1、导入用户商品矩阵 |
| 45 | + print "----------- 1、load data -----------" |
| 46 | + V = load_data("data.txt") |
| 47 | + # 2、非负矩阵分解 |
| 48 | + print "----------- 2、training -----------" |
| 49 | + W, H = train(V, 5, 10000, 1e-5) |
| 50 | + # 3、保存分解后的结果 |
| 51 | + print "----------- 3、save decompose -----------" |
| 52 | + save_file("W", W) |
| 53 | + save_file("H", H) |
| 54 | + # 4、预测 |
| 55 | + print "----------- 4、prediction -----------" |
| 56 | + predict = prediction(V, W, H, 0) |
| 57 | + # 进行Top-K推荐 |
| 58 | + print "----------- 5、top_k recommendation ------------" |
| 59 | + top_recom = top_k(predict, 2) |
| 60 | + print top_recom |
| 61 | + print W * H |
0 commit comments