|
| 1 | +_base_ = [ |
| 2 | + '../_base_/models/fpn_poolformer_s12.py', '../_base_/default_runtime.py', |
| 3 | + '../_base_/schedules/schedule_40k.py' |
| 4 | +] |
| 5 | + |
| 6 | +# dataset settings |
| 7 | +dataset_type = 'ADE20KDataset' |
| 8 | +data_root = 'data/ade/ADEChallengeData2016' |
| 9 | +img_norm_cfg = dict( |
| 10 | + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
| 11 | +crop_size = (512, 512) |
| 12 | +data_preprocessor = dict(size=crop_size) |
| 13 | +train_pipeline = [ |
| 14 | + dict(type='LoadImageFromFile'), |
| 15 | + dict(type='LoadAnnotations', reduce_zero_label=True), |
| 16 | + dict( |
| 17 | + type='RandomResize', |
| 18 | + scale=(2048, 512), |
| 19 | + ratio_range=(0.5, 2.0), |
| 20 | + keep_ratio=True), |
| 21 | + dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), |
| 22 | + dict(type='RandomFlip', prob=0.5), |
| 23 | + dict(type='PhotoMetricDistortion'), |
| 24 | + dict(type='PackSegInputs') |
| 25 | +] |
| 26 | +test_pipeline = [ |
| 27 | + dict(type='LoadImageFromFile'), |
| 28 | + dict(type='Resize', scale=(2048, 512), keep_ratio=True), |
| 29 | + dict(type='ResizeToMultiple', size_divisor=32), |
| 30 | + # add loading annotation after ``Resize`` because ground truth |
| 31 | + # does not need to do resize data transform |
| 32 | + dict(type='LoadAnnotations', reduce_zero_label=True), |
| 33 | + dict(type='PackSegInputs') |
| 34 | +] |
| 35 | + |
| 36 | +train_dataloader = dict( |
| 37 | + batch_size=4, |
| 38 | + num_workers=4, |
| 39 | + persistent_workers=True, |
| 40 | + sampler=dict(type='InfiniteSampler', shuffle=True), |
| 41 | + dataset=dict( |
| 42 | + type='RepeatDataset', |
| 43 | + times=50, |
| 44 | + dataset=dict( |
| 45 | + type=dataset_type, |
| 46 | + data_root=data_root, |
| 47 | + data_prefix=dict( |
| 48 | + img_path='images/training', |
| 49 | + seg_map_path='annotations/training'), |
| 50 | + pipeline=train_pipeline))) |
| 51 | +val_dataloader = dict( |
| 52 | + batch_size=1, |
| 53 | + num_workers=4, |
| 54 | + persistent_workers=True, |
| 55 | + sampler=dict(type='DefaultSampler', shuffle=False), |
| 56 | + dataset=dict( |
| 57 | + type=dataset_type, |
| 58 | + data_root=data_root, |
| 59 | + data_prefix=dict( |
| 60 | + img_path='images/validation', |
| 61 | + seg_map_path='annotations/validation'), |
| 62 | + pipeline=test_pipeline)) |
| 63 | +test_dataloader = val_dataloader |
| 64 | +val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU']) |
| 65 | +test_evaluator = val_evaluator |
| 66 | + |
| 67 | +# model settings |
| 68 | +model = dict( |
| 69 | + data_preprocessor=data_preprocessor, |
| 70 | + neck=dict(in_channels=[64, 128, 320, 512]), |
| 71 | + decode_head=dict(num_classes=150)) |
| 72 | + |
| 73 | +# optimizer |
| 74 | +# optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.0001) |
| 75 | +# optimizer_config = dict() |
| 76 | +# # learning policy |
| 77 | +# lr_config = dict(policy='poly', power=0.9, min_lr=0.0, by_epoch=False) |
| 78 | +optim_wrapper = dict( |
| 79 | + _delete_=True, |
| 80 | + type='AmpOptimWrapper', |
| 81 | + optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.0001)) |
| 82 | +param_scheduler = [ |
| 83 | + dict( |
| 84 | + type='PolyLR', |
| 85 | + power=0.9, |
| 86 | + begin=0, |
| 87 | + end=40000, |
| 88 | + eta_min=0.0, |
| 89 | + by_epoch=False, |
| 90 | + ) |
| 91 | +] |
0 commit comments