|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import pandas as pd\n", |
| 10 | + "import numpy as np\n", |
| 11 | + "from collections import defaultdict\n", |
| 12 | + "\n", |
| 13 | + "class MaxEnt:\n", |
| 14 | + " def __init__(self, max_iter=100):\n", |
| 15 | + " # 训练输入\n", |
| 16 | + " self.X_ = None\n", |
| 17 | + " # 训练标签\n", |
| 18 | + " self.y_ = None\n", |
| 19 | + " # 标签类别数量\n", |
| 20 | + " self.m = None \n", |
| 21 | + " # 特征数量\n", |
| 22 | + " self.n = None \n", |
| 23 | + " # 训练样本量\n", |
| 24 | + " self.N = None \n", |
| 25 | + " # 常数特征取值\n", |
| 26 | + " self.M = None\n", |
| 27 | + " # 权重系数\n", |
| 28 | + " self.w = None\n", |
| 29 | + " # 标签名称\n", |
| 30 | + " self.labels = defaultdict(int)\n", |
| 31 | + " # 特征名称\n", |
| 32 | + " self.features = defaultdict(int)\n", |
| 33 | + " # 最大迭代次数\n", |
| 34 | + " self.max_iter = max_iter\n", |
| 35 | + "\n", |
| 36 | + " ### 计算特征函数关于经验联合分布P(X,Y)的期望\n", |
| 37 | + " def _EP_hat_f(self, x, y):\n", |
| 38 | + " self.Pxy = np.zeros((self.m, self.n))\n", |
| 39 | + " self.Px = np.zeros(self.n)\n", |
| 40 | + " for x_, y_ in zip(x, y):\n", |
| 41 | + " # 遍历每个样本\n", |
| 42 | + " for x__ in set(x_):\n", |
| 43 | + " self.Pxy[self.labels[y_], self.features[x__]] += 1\n", |
| 44 | + " self.Px[self.features[x__]] += 1 \n", |
| 45 | + " self.EP_hat_f = self.Pxy/self.N\n", |
| 46 | + " \n", |
| 47 | + " ### 计算特征函数关于模型P(Y|X)与经验分布P(X)的期望\n", |
| 48 | + " def _EP_f(self):\n", |
| 49 | + " self.EPf = np.zeros((self.m, self.n))\n", |
| 50 | + " for X in self.X_:\n", |
| 51 | + " pw = self._pw(X)\n", |
| 52 | + " pw = pw.reshape(self.m, 1)\n", |
| 53 | + " px = self.Px.reshape(1, self.n)\n", |
| 54 | + " self.EP_f += pw*px / self.N\n", |
| 55 | + " \n", |
| 56 | + " ### 最大熵模型P(y|x)\n", |
| 57 | + " def _pw(self, x):\n", |
| 58 | + " mask = np.zeros(self.n+1)\n", |
| 59 | + " for ix in x:\n", |
| 60 | + " mask[self.features[ix]] = 1\n", |
| 61 | + " tmp = self.w * mask[1:]\n", |
| 62 | + " pw = np.exp(np.sum(tmp, axis=1))\n", |
| 63 | + " Z = np.sum(pw)\n", |
| 64 | + " pw = pw/Z\n", |
| 65 | + " return pw\n", |
| 66 | + "\n", |
| 67 | + " ### 熵模型拟合\n", |
| 68 | + " ### 基于改进的迭代尺度方法IIS\n", |
| 69 | + " def fit(self, x, y):\n", |
| 70 | + " # 训练输入\n", |
| 71 | + " self.X_ = x\n", |
| 72 | + " # 训练输出\n", |
| 73 | + " self.y_ = list(set(y))\n", |
| 74 | + " # 输入数据展平后集合\n", |
| 75 | + " tmp = set(self.X_.flatten())\n", |
| 76 | + " # 特征命名\n", |
| 77 | + " self.features = defaultdict(int, zip(tmp, range(1, len(tmp)+1))) \n", |
| 78 | + " # 标签命名\n", |
| 79 | + " self.labels = dict(zip(self.y_, range(len(self.y_))))\n", |
| 80 | + " # 特征数\n", |
| 81 | + " self.n = len(self.features)+1 \n", |
| 82 | + " # 标签类别数量\n", |
| 83 | + " self.m = len(self.labels)\n", |
| 84 | + " # 训练样本量\n", |
| 85 | + " self.N = len(x) \n", |
| 86 | + " # 计算EP_hat_f\n", |
| 87 | + " self._EP_hat_f(x, y)\n", |
| 88 | + " # 初始化系数矩阵\n", |
| 89 | + " self.w = np.zeros((self.m, self.n))\n", |
| 90 | + " # 循环迭代\n", |
| 91 | + " i = 0\n", |
| 92 | + " while i <= self.max_iter:\n", |
| 93 | + " # 计算EPf\n", |
| 94 | + " self._EP_f()\n", |
| 95 | + " # 令常数特征函数为M\n", |
| 96 | + " self.M = 100\n", |
| 97 | + " # IIS算法步骤(3)\n", |
| 98 | + " tmp = np.true_divide(self.EP_hat_f, self.EP_f)\n", |
| 99 | + " tmp[tmp == np.inf] = 0\n", |
| 100 | + " tmp = np.nan_to_num(tmp)\n", |
| 101 | + " sigma = np.where(tmp != 0, 1/self.M*np.log(tmp), 0) \n", |
| 102 | + " # 更新系数:IIS步骤(4)\n", |
| 103 | + " self.w = self.w + sigma\n", |
| 104 | + " i += 1\n", |
| 105 | + " print('training done.')\n", |
| 106 | + " return self\n", |
| 107 | + "\n", |
| 108 | + " # 定义最大熵模型预测函数\n", |
| 109 | + " def predict(self, x):\n", |
| 110 | + " res = np.zeros(len(x), dtype=np.int64)\n", |
| 111 | + " for ix, x_ in enumerate(x):\n", |
| 112 | + " tmp = self._pw(x_)\n", |
| 113 | + " print(tmp, np.argmax(tmp), self.labels)\n", |
| 114 | + " res[ix] = self.labels[self.y_[np.argmax(tmp)]]\n", |
| 115 | + " return np.array([self.y_[ix] for ix in res])" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 2, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [ |
| 123 | + { |
| 124 | + "name": "stdout", |
| 125 | + "output_type": "stream", |
| 126 | + "text": [ |
| 127 | + "(105, 4) (105,)\n" |
| 128 | + ] |
| 129 | + } |
| 130 | + ], |
| 131 | + "source": [ |
| 132 | + "from sklearn.datasets import load_iris\n", |
| 133 | + "from sklearn.model_selection import train_test_split\n", |
| 134 | + "raw_data = load_iris()\n", |
| 135 | + "X, labels = raw_data.data, raw_data.target\n", |
| 136 | + "X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.3, random_state=43)\n", |
| 137 | + "print(X_train.shape, y_train.shape)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": 3, |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [ |
| 145 | + { |
| 146 | + "data": { |
| 147 | + "text/plain": [ |
| 148 | + "array([2, 2, 2, 2, 2])" |
| 149 | + ] |
| 150 | + }, |
| 151 | + "execution_count": 3, |
| 152 | + "metadata": {}, |
| 153 | + "output_type": "execute_result" |
| 154 | + } |
| 155 | + ], |
| 156 | + "source": [ |
| 157 | + "labels[-5:]" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": 4, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [ |
| 165 | + { |
| 166 | + "name": "stderr", |
| 167 | + "output_type": "stream", |
| 168 | + "text": [ |
| 169 | + "D:\\Installation\\anaconda\\install\\lib\\site-packages\\ipykernel_launcher.py:90: RuntimeWarning: invalid value encountered in true_divide\n", |
| 170 | + "D:\\Installation\\anaconda\\install\\lib\\site-packages\\ipykernel_launcher.py:93: RuntimeWarning: divide by zero encountered in log\n" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "name": "stdout", |
| 175 | + "output_type": "stream", |
| 176 | + "text": [ |
| 177 | + "training done.\n", |
| 178 | + "[0.87116843 0.04683368 0.08199789] 0 {0: 0, 1: 1, 2: 2}\n", |
| 179 | + "[0.00261138 0.49573305 0.50165557] 2 {0: 0, 1: 1, 2: 2}\n", |
| 180 | + "[0.12626693 0.017157 0.85657607] 2 {0: 0, 1: 1, 2: 2}\n", |
| 181 | + "[1.55221378e-04 4.45985560e-05 9.99800180e-01] 2 {0: 0, 1: 1, 2: 2}\n", |
| 182 | + "[7.29970746e-03 9.92687370e-01 1.29226740e-05] 1 {0: 0, 1: 1, 2: 2}\n", |
| 183 | + "[0.01343943 0.01247887 0.9740817 ] 2 {0: 0, 1: 1, 2: 2}\n", |
| 184 | + "[0.85166079 0.05241898 0.09592023] 0 {0: 0, 1: 1, 2: 2}\n", |
| 185 | + "[0.00371481 0.00896982 0.98731537] 2 {0: 0, 1: 1, 2: 2}\n", |
| 186 | + "[2.69340079e-04 9.78392776e-01 2.13378835e-02] 1 {0: 0, 1: 1, 2: 2}\n", |
| 187 | + "[0.01224702 0.02294254 0.96481044] 2 {0: 0, 1: 1, 2: 2}\n", |
| 188 | + "[0.00323508 0.98724246 0.00952246] 1 {0: 0, 1: 1, 2: 2}\n", |
| 189 | + "[0.00196548 0.01681989 0.98121463] 2 {0: 0, 1: 1, 2: 2}\n", |
| 190 | + "[0.00480966 0.00345107 0.99173927] 2 {0: 0, 1: 1, 2: 2}\n", |
| 191 | + "[0.00221101 0.01888735 0.97890163] 2 {0: 0, 1: 1, 2: 2}\n", |
| 192 | + "[9.87528545e-01 3.25313387e-04 1.21461416e-02] 0 {0: 0, 1: 1, 2: 2}\n", |
| 193 | + "[3.84153917e-05 5.25603786e-01 4.74357798e-01] 1 {0: 0, 1: 1, 2: 2}\n", |
| 194 | + "[0.91969448 0.00730851 0.07299701] 0 {0: 0, 1: 1, 2: 2}\n", |
| 195 | + "[3.48493252e-03 9.96377722e-01 1.37345863e-04] 1 {0: 0, 1: 1, 2: 2}\n", |
| 196 | + "[0.00597935 0.02540794 0.96861271] 2 {0: 0, 1: 1, 2: 2}\n", |
| 197 | + "[0.96593729 0.01606867 0.01799404] 0 {0: 0, 1: 1, 2: 2}\n", |
| 198 | + "[7.07324443e-01 2.92672257e-01 3.29961259e-06] 0 {0: 0, 1: 1, 2: 2}\n", |
| 199 | + "[0.96122092 0.03604362 0.00273547] 0 {0: 0, 1: 1, 2: 2}\n", |
| 200 | + "[9.92671813e-01 7.31265179e-03 1.55352641e-05] 0 {0: 0, 1: 1, 2: 2}\n", |
| 201 | + "[9.99997290e-01 2.58555077e-06 1.24081335e-07] 0 {0: 0, 1: 1, 2: 2}\n", |
| 202 | + "[1.77991802e-05 4.62006560e-04 9.99520194e-01] 2 {0: 0, 1: 1, 2: 2}\n", |
| 203 | + "[9.99995176e-01 3.85240188e-06 9.72067357e-07] 0 {0: 0, 1: 1, 2: 2}\n", |
| 204 | + "[0.15306343 0.21405142 0.63288515] 2 {0: 0, 1: 1, 2: 2}\n", |
| 205 | + "[0.25817329 0.28818997 0.45363674] 2 {0: 0, 1: 1, 2: 2}\n", |
| 206 | + "[2.43530473e-04 4.07929999e-01 5.91826471e-01] 2 {0: 0, 1: 1, 2: 2}\n", |
| 207 | + "[0.71160155 0.27290911 0.01548934] 0 {0: 0, 1: 1, 2: 2}\n", |
| 208 | + "[2.94976826e-06 2.51510534e-02 9.74845997e-01] 2 {0: 0, 1: 1, 2: 2}\n", |
| 209 | + "[0.97629163 0.00331591 0.02039245] 0 {0: 0, 1: 1, 2: 2}\n", |
| 210 | + "[0.04513811 0.01484173 0.94002015] 2 {0: 0, 1: 1, 2: 2}\n", |
| 211 | + "[0.61382753 0.38321073 0.00296174] 0 {0: 0, 1: 1, 2: 2}\n", |
| 212 | + "[9.65538451e-01 3.86322918e-06 3.44576854e-02] 0 {0: 0, 1: 1, 2: 2}\n", |
| 213 | + "[0.00924088 0.01731108 0.97344804] 2 {0: 0, 1: 1, 2: 2}\n", |
| 214 | + "[0.02511142 0.93818613 0.03670245] 1 {0: 0, 1: 1, 2: 2}\n", |
| 215 | + "[9.99127831e-01 3.29723254e-04 5.42445518e-04] 0 {0: 0, 1: 1, 2: 2}\n", |
| 216 | + "[0.05081665 0.0038204 0.94536295] 2 {0: 0, 1: 1, 2: 2}\n", |
| 217 | + "[9.99985376e-01 6.85280694e-06 7.77081022e-06] 0 {0: 0, 1: 1, 2: 2}\n", |
| 218 | + "[9.99791732e-01 2.06536005e-04 1.73191035e-06] 0 {0: 0, 1: 1, 2: 2}\n", |
| 219 | + "[2.72323181e-04 2.99692548e-03 9.96730751e-01] 2 {0: 0, 1: 1, 2: 2}\n", |
| 220 | + "[0.02005139 0.97151852 0.00843009] 1 {0: 0, 1: 1, 2: 2}\n", |
| 221 | + "[0.95642409 0.02485912 0.01871679] 0 {0: 0, 1: 1, 2: 2}\n", |
| 222 | + "[0.00297317 0.01261126 0.98441558] 2 {0: 0, 1: 1, 2: 2}\n", |
| 223 | + "0.37777777777777777\n" |
| 224 | + ] |
| 225 | + } |
| 226 | + ], |
| 227 | + "source": [ |
| 228 | + "from sklearn.metrics import accuracy_score\n", |
| 229 | + "maxent = MaxEnt()\n", |
| 230 | + "maxent.fit(X_train, y_train)\n", |
| 231 | + "y_pred = maxent.predict(X_test)\n", |
| 232 | + "print(accuracy_score(y_test, y_pred))" |
| 233 | + ] |
| 234 | + }, |
| 235 | + { |
| 236 | + "cell_type": "code", |
| 237 | + "execution_count": null, |
| 238 | + "metadata": {}, |
| 239 | + "outputs": [], |
| 240 | + "source": [] |
| 241 | + } |
| 242 | + ], |
| 243 | + "metadata": { |
| 244 | + "kernelspec": { |
| 245 | + "display_name": "Python 3", |
| 246 | + "language": "python", |
| 247 | + "name": "python3" |
| 248 | + }, |
| 249 | + "language_info": { |
| 250 | + "codemirror_mode": { |
| 251 | + "name": "ipython", |
| 252 | + "version": 3 |
| 253 | + }, |
| 254 | + "file_extension": ".py", |
| 255 | + "mimetype": "text/x-python", |
| 256 | + "name": "python", |
| 257 | + "nbconvert_exporter": "python", |
| 258 | + "pygments_lexer": "ipython3", |
| 259 | + "version": "3.7.3" |
| 260 | + }, |
| 261 | + "toc": { |
| 262 | + "base_numbering": 1, |
| 263 | + "nav_menu": {}, |
| 264 | + "number_sections": true, |
| 265 | + "sideBar": true, |
| 266 | + "skip_h1_title": false, |
| 267 | + "title_cell": "Table of Contents", |
| 268 | + "title_sidebar": "Contents", |
| 269 | + "toc_cell": false, |
| 270 | + "toc_position": {}, |
| 271 | + "toc_section_display": true, |
| 272 | + "toc_window_display": false |
| 273 | + } |
| 274 | + }, |
| 275 | + "nbformat": 4, |
| 276 | + "nbformat_minor": 2 |
| 277 | +} |
0 commit comments