Skip to content

Commit 5fd5b02

Browse files
authored
1 parent 9f9cdeb commit 5fd5b02

File tree

1 file changed

+3
-0
lines changed

1 file changed

+3
-0
lines changed

README.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,7 @@ TODO
4343

4444
| Paper | Code |
4545
| ------------------------------------------------------------ | ------------------------------------------------------------ |
46+
|[Dilated Convolution based CSI Feedback Compression for Massive MIMO Systems](https://arxiv.org/abs/2106.04043)|[DCRNet](https://github.com/recusant7/DCRNet)|
4647
|[Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming](https://arxiv.org/abs/2007.00038)|[HBF-Net](https://github.com/HamedHojatian/HBF-Net)|
4748
|[CLNet: Complex Input Lightweight Neural Network designed for Massive MIMO CSI Feedback](https://arxiv.org/abs/2102.07507)|[CLNet](https://github.com/SIJIEJI/CLNet)|
4849
|[Block Deep Neural Network-Based Signal Detector for Generalized Spatial Modulation](https://arxiv.org/abs/2008.03612)|[B_DNN](https://github.com/hasanabs/B_DNN)|
@@ -131,6 +132,7 @@ TODO
131132
### Resource and network optimization
132133
| Paper | Code |
133134
| ------------------------------------------------------------ | ------------------------------------------------------------ |
135+
|[DeepBeam: Deep Waveform Learning for Coordination-Free Beam Management in mmWave Networks](https://arxiv.org/abs/2012.14350)|[deepbeam](https://github.com/wineslab/deepbeam)|
134136
| [Energy Efficiency in Reinforcement Learning for Wireless Sensor Networks](https://arxiv.org/pdf/1812.02538.pdf)| [mkoz71 / Energy-Efficiency-in-Reinforcement-Learning](https://github.com/mkoz71/Energy-Efficiency-in-Reinforcement-Learning) |
135137
| [Learning to optimize: Training deep neural networks for wireless resource management](https://arxiv.org/abs/1705.09412)| [Haoran-S / DNN_WMMSE](https://github.com/Haoran-S/DNN_WMMSE) |
136138
| [Implications of Decentralized Q-learning Resource Allocation in Wireless Networks](https://arxiv.org/pdf/1705.10508.pdf) | [wn-upf / decentralized_qlearning_resource_allocation_in_wns](https://github.com/wn-upf/decentralized_qlearning_resource_allocation_in_wns) |
@@ -202,6 +204,7 @@ TODO
202204
### Machine learning for emerging communication systems and applications
203205
| Paper | Code |
204206
| ------------------------------------------------------------ | ------------------------------------------------------------ |
207+
|[Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled Zero-Touch 6G Networks: Model-Free DRL Approach](https://arxiv.org/abs/2103.03817)|[ZT-PFR](https://github.com/wildsky95/ZT-PFR)|
205208
|[Multi-UAV Path Planning for Wireless Data Harvesting with Deep Reinforcement Learning](https://arxiv.org/abs/2010.12461)|[uav_data_harvesting](https://github.com/hbayerlein/uav_data_harvesting)|
206209
|[Spectrum sharing in vehicular networks based on multi-agent reinforcement learning](https://arxiv.org/abs/1905.02910)|[MARLspectrumSharingV2X](https://github.com/AlexVic/MARLspectrumSharingV2X)|
207210
|[An Open-Source Framework for Adaptive Traffic Signal Control](https://arxiv.org/pdf/1909.00395.pdf)|[docwza/sumolights](https://github.com/docwza/sumolights)|

0 commit comments

Comments
 (0)