|
224 | 224 | 1. [Should I Train a Model for Each Customer or Use One Model for All of My Customers?](https://towardsdatascience.com/should-i-train-a-model-for-each-customer-or-use-one-model-for-all-of-my-customers-f9e8734d991) |
225 | 225 | 1. [MLOps-Basics (GitHub repo)](https://github.com/graviraja/MLOps-Basics) by [raviraja](https://github.com/graviraja) |
226 | 226 | 1. [Another tool won’t fix your MLOps problems](https://dshersh.medium.com/too-many-mlops-tools-c590430ba81b) |
227 | | -1. [Best MLOps Tools: What to Look for and How to Evaluate Them](https://nimblebox.ai/blog/mlops-tools) |
228 | | -1. [MLOps vs. DevOps: A Detailed Comparison](https://nimblebox.ai/blog/mlops-vs-devops) |
229 | | -1. [A Guide To Setting Up Your MLOps Team](https://nimblebox.ai/blog/mlops-team-structure) |
| 227 | +1. [Best MLOps Tools: What to Look for and How to Evaluate Them (by NimbleBox.ai)](https://nimblebox.ai/blog/mlops-tools) |
| 228 | +1. [MLOps vs. DevOps: A Detailed Comparison (by NimbleBox.ai)](https://nimblebox.ai/blog/mlops-vs-devops) |
| 229 | +1. [A Guide To Setting Up Your MLOps Team (by NimbleBox.ai)](https://nimblebox.ai/blog/mlops-team-structure) |
230 | 230 | </details> |
231 | 231 |
|
232 | 232 |
|
|
300 | 300 | 1. [Automating Data Protection at Scale](https://medium.com/airbnb-engineering/automating-data-protection-at-scale-part-1-c74909328e08) |
301 | 301 | 1. [A curated list of awesome pipeline toolkits](https://github.com/pditommaso/awesome-pipeline) |
302 | 302 | 1. [Data Mesh Archtitecture](https://www.datamesh-architecture.com/) |
303 | | -1. [The Essential Guide to Data Exploration in Machine Learning](https://nimblebox.ai/blog/data-exploration) |
| 303 | +1. [The Essential Guide to Data Exploration in Machine Learning (by NimbleBox.ai)](https://nimblebox.ai/blog/data-exploration) |
304 | 304 | </details> |
305 | 305 |
|
306 | 306 |
|
|
365 | 365 | 1. [Model health assurance at LinkedIn. By LinkedIn Engineering](https://engineering.linkedin.com/blog/2021/model-health-assurance-at-linkedin) |
366 | 366 | 1. [How to Trust Your Deep Learning Code](https://krokotsch.eu/cleancode/2020/08/11/Unit-Tests-for-Deep-Learning.html) ([Accompanying code](https://github.com/tilman151/unittest_dl)) |
367 | 367 | 1. [Estimating Performance of Regression Models Without Ground-Truth](https://bit.ly/medium-estimating-performance-regression) (Using [NannyML](https://bit.ly/ml-ops-nannyml)) |
368 | | -1. [How Hyperparameter Tuning in Machine Learning Works](https://nimblebox.ai/blog/hyperparameter-tuning-machine-learning) |
| 368 | +1. [How Hyperparameter Tuning in Machine Learning Works (by NimbleBox.ai)](https://nimblebox.ai/blog/hyperparameter-tuning-machine-learning) |
369 | 369 | </details> |
370 | 370 |
|
371 | 371 | <a name="mlops-infra"></a> |
|
388 | 388 | 1. [The 2021 State of AI Infrastructure Survey](https://pages.run.ai/hubfs/PDFs/2021-State-of-AI-Infrastructure-Survey.pdf) |
389 | 389 | 1. [AI infrastructure Maturity matrix](https://pages.run.ai/hubfs/PDFs/AI-Infrastructure-Maturity-Benchmarking-Model.pdf) |
390 | 390 | 1. [A Curated Collection of the Best Open-source MLOps Tools. By Censius](https://censius.ai/mlops-tools) |
391 | | -1. [Best MLOps Tools to Manage the ML Lifecycle](https://nimblebox.ai/blog/mlops-tools) |
| 391 | +1. [Best MLOps Tools to Manage the ML Lifecycle (by NimbleBox.ai)](https://nimblebox.ai/blog/mlops-tools) |
392 | 392 | </details> |
393 | 393 |
|
394 | 394 |
|
@@ -517,8 +517,8 @@ A list of scientific and industrial papers and resources about Machine Learning |
517 | 517 | 1. [Book: "Distributed Machine Learning Patterns". 2022. By Yuan Tang. Manning](https://www.manning.com/books/distributed-machine-learning-patterns) |
518 | 518 | 1. [Machine Learning for Beginners - A Curriculum](https://github.com/microsoft/ML-For-Beginners) |
519 | 519 | 1. [Making Friends with Machine Learning. By Cassie Kozyrkov]() |
520 | | -1. [Machine Learning Workflow - A Complete Guide](https://nimblebox.ai/blog/machine-learning-workflow) |
521 | | -1. [Performance Metrics to Monitor in Machine Learning Projects](https://nimblebox.ai/blog/machine-learning-performance-metrics) |
| 520 | +1. [Machine Learning Workflow - A Complete Guide (by NimbleBox.ai)](https://nimblebox.ai/blog/machine-learning-workflow) |
| 521 | +1. [Performance Metrics to Monitor in Machine Learning Projects (by NimbleBox.ai)](https://nimblebox.ai/blog/machine-learning-performance-metrics) |
522 | 522 |
|
523 | 523 | </details> |
524 | 524 |
|
|
0 commit comments