Skip to content

Persdre/BufferGraph

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BuffGraph

BuffGraph is an innovative model to adjust message passing of each edge in the graph, meticulously crafted to address the heterophily challenge of imbalanced node classification within graph data.

Table of Contents

Code Overview

This code repository consists of several folders:

  • model: BuffGraph code.
  • ablation study: Ablation study code of BuffGraph: deduct heterophily loss; deduct original graph; deduct updating message passing.
  • parameters sensitivity: Finetuning mixup parameter alpha and heterophily loss parameter lambda code.
  • scalability study: Scalability study code on Coauthor-Physics.

Requirements

We list main requirements of this repository below. For full requirements, please refer to the provided environment.yml file

  • dgl==1.1.0
  • torch==2.0.0+cu117
  • torch-cluster==1.6.1+pt20cu117
  • torch-geometric==2.3.0
  • torch-scatter==2.1.1+pt20cu117
  • torch-sparse==0.6.17+pt20cu117
  • torch-spline-conv==1.2.2+pt20cu117
  • torchaudio==2.0.1+cu117
  • torchmetrics==0.11.4
  • torchvision==0.15.1+cu117
  • transformers==4.30.2

Running Code

For example, if you want to run BuffGraph code on the dataset Amazon-Computers, go to the model folder first, then run the following commands:

``` 
python pre_train.py --dataset="amazoncomputers"
python process_edges.py --dataset="amazoncomputers"
python buffgraph.py --dataset="amazoncomputers"
```

License

This dataset is under license CC BY-SA 4.0.

About

[LOG 2025 Oral] Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs https://openreview.net/pdf?id=6ikB5L1kzq

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages