-
XMU
- Xiamen
Stars
💫 Toolkit to help you get started with Spec-Driven Development
2025年最新总结,阿里,腾讯,百度,美团,头条等技术面试题目,以及答案,专家出题人分析汇总。
The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (V…
🎯 告别信息过载,AI 助你看懂新闻资讯热点,简单的舆情监控分析 - 多平台热点聚合+基于 MCP 的AI分析工具。监控35个平台(抖音、知乎、B站、华尔街见闻、财联社等),智能筛选+自动推送+AI对话分析(用自然语言深度挖掘新闻:趋势追踪、情感分析、相似检索等13种工具)。支持企业微信/个人微信/飞书/钉钉/Telegram/邮件/ntfy/bark/slack 推送,30秒网页部署,1分…
Qlib is an AI-oriented Quant investment platform that aims to use AI tech to empower Quant Research, from exploring ideas to implementing productions. Qlib supports diverse ML modeling paradigms, i…
Open-sourced codes for MiniGPT-4 and MiniGPT-v2 (https://minigpt-4.github.io, https://minigpt-v2.github.io/)
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
阿布量化交易系统(股票,期权,期货,比特币,机器学习) 基于python的开源量化交易,量化投资架构
GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.
Advanced AI Explainability for computer vision. Support for CNNs, Vision Transformers, Classification, Object detection, Segmentation, Image similarity and more.
Databricks’ Dolly, a large language model trained on the Databricks Machine Learning Platform
"AI-Trader: Can AI Beat the Market?" Live Trading Bench: https://ai4trade.ai
QUANTAXIS 支持任务调度 分布式部署的 股票/期货/期权 数据/回测/模拟/交易/可视化/多账户 纯本地量化解决方案
OpenMMLab Semantic Segmentation Toolbox and Benchmark.
Kronos: A Foundation Model for the Language of Financial Markets
提供同花顺客户端/miniqmt/雪球的股票量化交易,支持跟踪 joinquant /ricequant 模拟交易 和 实盘雪球组合
Automated Machine Learning with scikit-learn
⛽️「算法通关手册」:从零开始的「算法与数据结构」学习教程,200 道「算法面试热门题目」,1000+ 道「LeetCode 题目解析」,持续更新中!
💬 Machine Learning Course with Python:
ValueCell is a community-driven, multi-agent platform for financial applications.
[ICLR 2024] Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
Model interpretability and understanding for PyTorch
PyTorch implementation of MoCo: https://arxiv.org/abs/1911.05722
Google Drive Public File Downloader when Curl/Wget Fails

