|
48 | 48 | },
|
49 | 49 | {
|
50 | 50 | "cell_type": "code",
|
51 |
| - "execution_count": 19, |
| 51 | + "execution_count": 7, |
52 | 52 | "metadata": {},
|
53 | 53 | "outputs": [],
|
54 | 54 | "source": [
|
|
58 | 58 | " {'role': 'Data Scientist', 'skills': ['Python', 'R', 'Machine Learning', 'Deep Learning']},\n",
|
59 | 59 | " {'role': 'Machine Learning Engineer', 'skills': ['Python', 'TensorFlow', 'PyTorch', 'Scikit-Learn']},\n",
|
60 | 60 | " {'role': 'Data Engineer', 'skills': ['Python', 'Apache Spark', 'Hadoop', 'SQL']},\n",
|
61 |
| - " {'role': 'Business Intelligence Analyst', 'skills': ['SQL', 'Tableau', 'Power BI', 'Excel']},\n", |
| 61 | + " {'role': 'Business Intelligence Analyst', 'skills': ['Python', 'SQL', 'Tableau', 'Power BI', 'Excel']},\n", |
62 | 62 | " {'role': 'Quantitative Analyst', 'skills': ['R', 'Python', 'MATLAB', 'Statistics']},\n",
|
63 | 63 | " {'role': 'Operations Analyst', 'skills': ['Python', 'SQL', 'Data Visualization', 'Process Improvement']},\n",
|
64 | 64 | " {'role': 'Database Administrator', 'skills': ['SQL', 'Oracle', 'MySQL', 'Database Management']},\n",
|
|
86 | 86 | {
|
87 | 87 | "cell_type": "code",
|
88 | 88 | "execution_count": 20,
|
| 89 | + "metadata": {}, |
| 90 | + "outputs": [ |
| 91 | + { |
| 92 | + "data": { |
| 93 | + "text/plain": [ |
| 94 | + "['Data Analyst', 'Business Intelligence Analyst']" |
| 95 | + ] |
| 96 | + }, |
| 97 | + "execution_count": 20, |
| 98 | + "metadata": {}, |
| 99 | + "output_type": "execute_result" |
| 100 | + } |
| 101 | + ], |
| 102 | + "source": [ |
| 103 | + "# Determine which jobs you're qualified for \n", |
| 104 | + "qualified_roles = []\n", |
| 105 | + "\n", |
| 106 | + "for job in job_roles:\n", |
| 107 | + " # Initialize qualified flag\n", |
| 108 | + " qualified = True\n", |
| 109 | + " # Go through each skill in the skills key\n", |
| 110 | + " for skill in my_skills:\n", |
| 111 | + " if skill not in job['skills']:\n", |
| 112 | + " qualified = False\n", |
| 113 | + " break\n", |
| 114 | + " if qualified:\n", |
| 115 | + " # Add the job dictionary to the qualified_jobs list\n", |
| 116 | + " qualified_roles.append(job['role'])\n", |
| 117 | + "\n", |
| 118 | + "qualified_roles" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "code", |
| 123 | + "execution_count": 18, |
89 | 124 | "metadata": {
|
90 | 125 | "colab": {
|
91 | 126 | "base_uri": "https://localhost:8080/"
|
|
103 | 138 | "id": "_F6xhXQUiNX-",
|
104 | 139 | "outputId": "65dcc832-2e0a-4e87-cd80-ae65d187726d"
|
105 | 140 | },
|
106 |
| - "outputs": [], |
| 141 | + "outputs": [ |
| 142 | + { |
| 143 | + "data": { |
| 144 | + "text/plain": [ |
| 145 | + "['Data Analyst', 'Business Intelligence Analyst']" |
| 146 | + ] |
| 147 | + }, |
| 148 | + "execution_count": 18, |
| 149 | + "metadata": {}, |
| 150 | + "output_type": "execute_result" |
| 151 | + } |
| 152 | + ], |
107 | 153 | "source": [
|
108 | 154 | "# Determine which jobs you're qualified for \n",
|
109 | 155 | "qualified_roles = []\n",
|
110 | 156 | "\n",
|
111 | 157 | "for job in job_roles:\n",
|
112 |
| - " # Initialize qualified flag\n", |
113 |
| - " qualified = True\n", |
114 |
| - " # Go through each skill in the skills key\n", |
115 |
| - " for skill in job['skills']:\n", |
116 |
| - " if skill not in my_skills:\n", |
117 |
| - " qualified = False\n", |
118 |
| - " break\n", |
119 |
| - " if qualified:\n", |
120 |
| - " # Add the job dictionary to the qualified_jobs list\n", |
121 |
| - " qualified_roles.append(job['role'])" |
| 158 | + " # Check if all required skills are in my_skills\n", |
| 159 | + " if all(skill in job['skills'] for skill in my_skills):\n", |
| 160 | + " # Add the job role to the qualified_roles list\n", |
| 161 | + " qualified_roles.append(job['role'])\n", |
| 162 | + "\n", |
| 163 | + "qualified_roles" |
122 | 164 | ]
|
123 | 165 | },
|
124 | 166 | {
|
|
136 | 178 | },
|
137 | 179 | {
|
138 | 180 | "cell_type": "code",
|
139 |
| - "execution_count": 21, |
| 181 | + "execution_count": 14, |
140 | 182 | "metadata": {},
|
141 | 183 | "outputs": [
|
142 | 184 | {
|
|
171 | 213 | },
|
172 | 214 | {
|
173 | 215 | "cell_type": "code",
|
174 |
| - "execution_count": 22, |
| 216 | + "execution_count": 11, |
175 | 217 | "metadata": {},
|
176 | 218 | "outputs": [
|
177 | 219 | {
|
|
207 | 249 | "name": "python",
|
208 | 250 | "nbconvert_exporter": "python",
|
209 | 251 | "pygments_lexer": "ipython3",
|
210 |
| - "version": "3.9.19" |
| 252 | + "version": "3.11.9" |
211 | 253 | }
|
212 | 254 | },
|
213 | 255 | "nbformat": 4,
|
|
0 commit comments