Skip to content

Commit ae32909

Browse files
committed
update yolov5 readme
1 parent 8aa36a3 commit ae32909

File tree

3 files changed

+9
-9
lines changed

3 files changed

+9
-9
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ All the models are implemented in pytorch/mxnet/tensorflown first, and export a
1010

1111
## News
1212

13+
- `18 Oct 2021`. [xupengao](https://github.com/xupengao): YOLOv5 updated to v6.0, supporting n/s/m/l/x/n6/s6/m6/l6/x6.
1314
- `31 Aug 2021`. [FamousDirector](https://github.com/FamousDirector): update retinaface to support TensorRT 8.0.
1415
- `27 Aug 2021`. [HaiyangPeng](https://github.com/HaiyangPeng): add a python wrapper for hrnet segmentation.
1516
- `1 Jul 2021`. [freedenS](https://github.com/freedenS): DE⫶TR: End-to-End Object Detection with Transformers. First Transformer model!
@@ -24,7 +25,6 @@ All the models are implemented in pytorch/mxnet/tensorflown first, and export a
2425
- `23 Apr 2021`. [irvingzhang0512](https://github.com/irvingzhang0512) add TSM: Temporal Shift Module for Efficient Video Understanding, ICCV2019.
2526
- `23 Apr 2021`. [freedenS](https://github.com/freedenS) implement MaskRCNN, till now the MOST complicated model in this repo.
2627
- `16 Apr 2021`. [irvingzhang0512](https://github.com/irvingzhang0512) implement lenet and resnet50 with Python API, [freedenS](https://github.com/freedenS) implement FasterRCNN with five plugins, cheers!
27-
- `2 Apr 2021`. [mingyu6yang](https://github.com/mingyu6yang) added a python wrapper for retinaface, [makaveli10](https://github.com/makaveli10) added DenseNet-121.
2828

2929
## Tutorials
3030

@@ -68,7 +68,7 @@ Following models are implemented.
6868
|[yolov3](./yolov3)| darknet-53, weights and pytorch implementation from [ultralytics/yolov3](https://github.com/ultralytics/yolov3) |
6969
|[yolov3-spp](./yolov3-spp)| darknet-53, weights and pytorch implementation from [ultralytics/yolov3](https://github.com/ultralytics/yolov3) |
7070
|[yolov4](./yolov4)| CSPDarknet53, weights from [AlexeyAB/darknet](https://github.com/AlexeyAB/darknet#pre-trained-models), pytorch implementation from [ultralytics/yolov3](https://github.com/ultralytics/yolov3) |
71-
|[yolov5](./yolov5)| yolov5 v1.0-v5.0, pytorch implementation from [ultralytics/yolov5](https://github.com/ultralytics/yolov5) |
71+
|[yolov5](./yolov5)| yolov5 v1.0-v6.0, pytorch implementation from [ultralytics/yolov5](https://github.com/ultralytics/yolov5) |
7272
|[retinaface](./retinaface)| resnet50 and mobilnet0.25, weights from [biubug6/Pytorch_Retinaface](https://github.com/biubug6/Pytorch_Retinaface) |
7373
|[arcface](./arcface)| LResNet50E-IR, LResNet100E-IR and MobileFaceNet, weights from [deepinsight/insightface](https://github.com/deepinsight/insightface) |
7474
|[retinafaceAntiCov](./retinafaceAntiCov)| mobilenet0.25, weights from [deepinsight/insightface](https://github.com/deepinsight/insightface), retinaface anti-COVID-19, detect face and mask attribute |

yolov5/README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,8 +4,9 @@ The Pytorch implementation is [ultralytics/yolov5](https://github.com/ultralytic
44

55
## Different versions of yolov5
66

7-
Currently, we support yolov5 v1.0(yolov5s only), v2.0, v3.0, v3.1, v4.0 and v5.0.
7+
Currently, we support yolov5 v1.0, v2.0, v3.0, v3.1, v4.0, v5.0 and v6.0.
88

9+
- For yolov5 v6.0, download .pt from [yolov5 release v6.0](https://github.com/ultralytics/yolov5/releases/tag/v6.0), `git clone -b v6.0 https://github.com/ultralytics/yolov5.git` and `git clone https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in current page.
910
- For yolov5 v5.0, download .pt from [yolov5 release v5.0](https://github.com/ultralytics/yolov5/releases/tag/v5.0), `git clone -b v5.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v5.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v5.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v5.0/yolov5).
1011
- For yolov5 v4.0, download .pt from [yolov5 release v4.0](https://github.com/ultralytics/yolov5/releases/tag/v4.0), `git clone -b v4.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v4.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v4.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v4.0/yolov5).
1112
- For yolov5 v3.1, download .pt from [yolov5 release v3.1](https://github.com/ultralytics/yolov5/releases/tag/v3.1), `git clone -b v3.1 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v3.1 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v3.1](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v3.1/yolov5).
@@ -15,7 +16,7 @@ Currently, we support yolov5 v1.0(yolov5s only), v2.0, v3.0, v3.1, v4.0 and v5.0
1516

1617
## Config
1718

18-
- Choose the model s/m/l/x/s6/m6/l6/x6 from command line arguments.
19+
- Choose the model n/s/m/l/x/n6/s6/m6/l6/x6 from command line arguments.
1920
- Input shape defined in yololayer.h
2021
- Number of classes defined in yololayer.h, **DO NOT FORGET TO ADAPT THIS, If using your own model**
2122
- INT8/FP16/FP32 can be selected by the macro in yolov5.cpp, **INT8 need more steps, pls follow `How to Run` first and then go the `INT8 Quantization` below**
@@ -29,9 +30,8 @@ Currently, we support yolov5 v1.0(yolov5s only), v2.0, v3.0, v3.1, v4.0 and v5.0
2930
1. generate .wts from pytorch with .pt, or download .wts from model zoo
3031

3132
```
32-
git clone -b v5.0 https://github.com/ultralytics/yolov5.git
33-
git clone https://github.com/wang-xinyu/tensorrtx.git
34-
// download https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
33+
// clone code according to above #Different versions of yolov5
34+
// download https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt
3535
cp {tensorrtx}/yolov5/gen_wts.py {ultralytics}/yolov5
3636
cd {ultralytics}/yolov5
3737
python gen_wts.py -w yolov5s.pt -o yolov5s.wts
@@ -48,7 +48,7 @@ cd build
4848
cp {ultralytics}/yolov5/yolov5s.wts {tensorrtx}/yolov5/build
4949
cmake ..
5050
make
51-
sudo ./yolov5 -s [.wts] [.engine] [s/m/l/x/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file
51+
sudo ./yolov5 -s [.wts] [.engine] [n/s/m/l/x/n6/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file
5252
sudo ./yolov5 -d [.engine] [image folder] // deserialize and run inference, the images in [image folder] will be processed.
5353
// For example yolov5s
5454
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s

yolov5/yolov5.cpp

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
#include "utils.h"
88
#include "calibrator.h"
99

10-
#define USE_FP32 // set USE_INT8 or USE_FP16 or USE_FP32
10+
#define USE_FP16 // set USE_INT8 or USE_FP16 or USE_FP32
1111
#define DEVICE 0 // GPU id
1212
#define NMS_THRESH 0.4
1313
#define CONF_THRESH 0.5

0 commit comments

Comments
 (0)