Differentiable voxelization operator using Pytorch
Compatibale with OpenPCDet (https://github.com/open-mmlab/OpenPCDet)
- Voxelization operator
from voxel_ops import Voxelization voxel_module = Voxelization(voxel_size=[0.16, 0.16, 4], point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1], max_num_points=32, # number of points per voxel max_voxels=40000, deterministic=True, # differentiable only if deterministic==True )
- Work with OpenPCDet
- NAME: differentiable_voxelize RETAIN_GRAPH: False END_TO_END_MODE: False DETERMINISTIC: True VOXEL_SIZE: [0.16, 0.16, 4] MAX_POINTS_PER_VOXEL: 32 MAX_NUMBER_OF_VOXELS: { 'train': 16000, 'test': 40000 }
a. Install pytorch properly.
b. Clone this repository.
git clone [email protected]:Uzukidd/voxelization.gitc. Install voxel-ops from source.
cd ./voxelization
pip install -e .See ./test/ for more details