|
20 | 20 | pretrained = 'imagenet'
|
21 | 21 | phases = ['test_A']
|
22 | 22 | use_gpu = torch.cuda.is_available()
|
23 |
| -batch_size = 128 |
| 23 | +batch_size = 32 |
24 | 24 | INPUT_WORKERS = 32
|
25 | 25 | checkpoint_filename = arch + '_' + pretrained
|
26 | 26 | best_check = 'checkpoint/' + checkpoint_filename + '_best.pth.tar' #tar
|
27 |
| -input_size = 256 #[224, 256, 384, 480, 640] |
28 |
| -train_scale = 256 |
29 |
| -test_scale = 256 |
| 27 | +input_size = 224 #[224, 256, 384, 480, 640] |
| 28 | +train_scale = 224 |
| 29 | +test_scale = 224 |
30 | 30 | AdaptiveAvgPool = True
|
31 | 31 |
|
32 | 32 |
|
@@ -158,6 +158,7 @@ def test_model (model, criterion):
|
158 | 158 | running_corrects = 0
|
159 | 159 | top1 = AverageMeter()
|
160 | 160 | top3 = AverageMeter()
|
| 161 | + loss1 = AverageMeter() |
161 | 162 | results = []
|
162 | 163 | aug_softmax = {}
|
163 | 164 |
|
@@ -198,15 +199,16 @@ def test_model (model, criterion):
|
198 | 199 | prec3 = res[1]
|
199 | 200 | top1.update(prec1[0], inputs.data.size(0))
|
200 | 201 | top3.update(prec3[0], inputs.data.size(0))
|
| 202 | + loss1.update(loss.data[0], inputs.size(0)) |
201 | 203 |
|
202 | 204 | results += batch_to_list_of_dicts(pred_list, img_name_raw)
|
203 | 205 |
|
204 | 206 | epoch_loss = running_loss / dataset_sizes[phase]
|
205 | 207 | epoch_acc = running_corrects / dataset_sizes[phase]
|
206 | 208 |
|
207 |
| - print('{} Loss: {:.6f} Acc: {:.6f}'.format( |
208 |
| - phase, epoch_loss, epoch_acc)) |
209 |
| - print(' * Prec@1 {top1.avg:.6f} Prec@3 {top3.avg:.6f}'.format(top1=top1, top3=top3)) |
| 209 | +# print('{} Loss: {:.6f} Acc: {:.6f}'.format( |
| 210 | +# phase, epoch_loss, epoch_acc)) |
| 211 | + print(' * Prec@1 {top1.avg:.6f} Prec@3 {top3.avg:.6f} Loss@1 {loss1.avg:.6f}'.format(top1=top1, top3=top3, loss1=loss1)) |
210 | 212 |
|
211 | 213 | with open(('result/%s_submit1_%s.json'%(checkpoint_filename, phase)), 'w') as f:
|
212 | 214 | json.dump(results, f)
|
|
0 commit comments