@@ -167,6 +167,14 @@ def _boost(self, iboost, X, y, sample_weight, X_argsorted=None):
167167 sample_weight : array-like of shape = [n_samples]
168168 The current sample weights.
169169
170+ X_argsorted : array-like, shape = [n_samples, n_features] (optional)
171+ Each column of ``X_argsorted`` holds the row indices of ``X``
172+ sorted according to the value of the corresponding feature
173+ in ascending order.
174+ The argument is supported to enable multiple decision trees
175+ to share the data structure and to avoid re-computation in
176+ tree ensembles. For maximum efficiency use dtype np.int32.
177+
170178 Returns
171179 -------
172180 sample_weight : array-like of shape = [n_samples] or None
@@ -397,6 +405,14 @@ def _boost(self, iboost, X, y, sample_weight, X_argsorted=None):
397405 sample_weight : array-like of shape = [n_samples]
398406 The current sample weights.
399407
408+ X_argsorted : array-like, shape = [n_samples, n_features] (optional)
409+ Each column of ``X_argsorted`` holds the row indices of ``X``
410+ sorted according to the value of the corresponding feature
411+ in ascending order.
412+ The argument is supported to enable multiple decision trees
413+ to share the data structure and to avoid re-computation in
414+ tree ensembles. For maximum efficiency use dtype np.int32.
415+
400416 Returns
401417 -------
402418 sample_weight : array-like of shape = [n_samples] or None
@@ -913,6 +929,14 @@ def _boost(self, iboost, X, y, sample_weight, X_argsorted=None):
913929 sample_weight : array-like of shape = [n_samples]
914930 The current sample weights.
915931
932+ X_argsorted : array-like, shape = [n_samples, n_features] (optional)
933+ Each column of ``X_argsorted`` holds the row indices of ``X``
934+ sorted according to the value of the corresponding feature
935+ in ascending order.
936+ The argument is supported to enable multiple decision trees
937+ to share the data structure and to avoid re-computation in
938+ tree ensembles. For maximum efficiency use dtype np.int32.
939+
916940 Returns
917941 -------
918942 sample_weight : array-like of shape = [n_samples] or None
@@ -942,6 +966,7 @@ def _boost(self, iboost, X, y, sample_weight, X_argsorted=None):
942966
943967 # Fit on the bootstrapped sample and obtain a prediction
944968 # for all samples in the training set
969+ # X_argsorted is not used since bootstrap copies are used.
945970 estimator .fit (X [bootstrap_idx ], y [bootstrap_idx ])
946971 y_predict = estimator .predict (X )
947972
0 commit comments