|
| 1 | +package aima.core.agent.basic |
| 2 | + |
| 3 | +import aima.core.agent.StatelessAgent |
| 4 | +import aima.core.agent.basic.LRTAStarAgent.IdentifyState |
| 5 | +import aima.core.agent.basic.LRTAStarAgentState.{COST_ESTIMATES, RESULT} |
| 6 | +import aima.core.search.api.OnlineSearchProblem |
| 7 | + |
| 8 | +/** |
| 9 | + * |
| 10 | + * |
| 11 | + * @author Shawn Garner |
| 12 | + */ |
| 13 | +final class LRTAStarAgent[PERCEPT, ACTION, STATE]( |
| 14 | + identifyStateFor: IdentifyState[PERCEPT, STATE], |
| 15 | + onlineProblem: OnlineSearchProblem[ACTION, STATE], |
| 16 | + h: STATE => Double, |
| 17 | + stop: ACTION |
| 18 | +) extends StatelessAgent[PERCEPT, ACTION, LRTAStarAgentState[ACTION, STATE]] { |
| 19 | + |
| 20 | + import LRTAStarAgentState.Implicits._ |
| 21 | + |
| 22 | + type RESULT_TYPE = RESULT[ACTION, STATE] |
| 23 | + type COST_ESTIMATES_TYPE = COST_ESTIMATES[STATE] |
| 24 | + |
| 25 | + def lrtaCost(s: STATE, a: ACTION, sPrime: Option[STATE], H: COST_ESTIMATES_TYPE): Double = { |
| 26 | + val cost: Option[Double] = for { |
| 27 | + sPrime_ <- sPrime |
| 28 | + stepCost = onlineProblem.stepCost(s, a, sPrime_) |
| 29 | + tableLookupCost <- H.get(sPrime_) |
| 30 | + } yield stepCost + tableLookupCost |
| 31 | + |
| 32 | + cost.getOrElse(h(s)) |
| 33 | + } |
| 34 | + |
| 35 | + override val agentFunction: AgentFunction = { |
| 36 | + case (percept, priorAgentState) => |
| 37 | + val sPrime = identifyStateFor(percept) |
| 38 | + |
| 39 | + if (onlineProblem.isGoalState(sPrime)) { |
| 40 | + |
| 41 | + (stop, priorAgentState.copy(previousAction = Some(stop))) |
| 42 | + |
| 43 | + } else { |
| 44 | + |
| 45 | + val updatedH: COST_ESTIMATES_TYPE = |
| 46 | + priorAgentState.H.computeIfAbsent(sPrime, _ => h(sPrime)) |
| 47 | + |
| 48 | + val (updatedResult, updatedH2): (RESULT_TYPE, COST_ESTIMATES_TYPE) = |
| 49 | + (priorAgentState.previousState, priorAgentState.previousAction) match { |
| 50 | + case (Some(_s), Some(_a)) if !priorAgentState.result.get2(_s, _a).contains(sPrime) => |
| 51 | + val resultOrigActionToState: Map[ACTION, STATE] = |
| 52 | + priorAgentState.result.getOrElse(_s, Map.empty[ACTION, STATE]) |
| 53 | + val updatedResultActionToState |
| 54 | + : Map[ACTION, STATE] = resultOrigActionToState.put(_a, sPrime) // TODO: could be less verbose with lense |
| 55 | + |
| 56 | + val finalResult = priorAgentState.result.put(_s, updatedResultActionToState) |
| 57 | + val priorActionsCost = |
| 58 | + onlineProblem.actions(_s).map(b => lrtaCost(_s, b, finalResult.get2(_s, b), updatedH)) |
| 59 | + val minPriorActionCost = priorActionsCost match { |
| 60 | + case Nil => None |
| 61 | + case _ => Some(priorActionsCost.min) |
| 62 | + } |
| 63 | + val newH = minPriorActionCost match { |
| 64 | + case None => updatedH |
| 65 | + case Some(minCost) => updatedH.put(_s, minCost) |
| 66 | + } |
| 67 | + |
| 68 | + ( |
| 69 | + finalResult, |
| 70 | + newH |
| 71 | + ) |
| 72 | + case _ => |
| 73 | + ( |
| 74 | + priorAgentState.result, |
| 75 | + updatedH |
| 76 | + ) |
| 77 | + } |
| 78 | + |
| 79 | + val newActions: List[ACTION] = onlineProblem.actions(sPrime) |
| 80 | + val newAction: ACTION = newActions match { |
| 81 | + case Nil => stop |
| 82 | + case _ => newActions.minBy(b => lrtaCost(sPrime, b, updatedResult.get2(sPrime, b), updatedH2)) |
| 83 | + } |
| 84 | + |
| 85 | + val updatedAgentState = priorAgentState.copy( |
| 86 | + result = updatedResult, |
| 87 | + H = updatedH2, |
| 88 | + previousState = Some(sPrime), |
| 89 | + previousAction = Some(newAction) |
| 90 | + ) |
| 91 | + |
| 92 | + (newAction, updatedAgentState) |
| 93 | + } |
| 94 | + } |
| 95 | + |
| 96 | +} |
| 97 | + |
| 98 | +final case class LRTAStarAgentState[ACTION, STATE]( |
| 99 | + result: RESULT[ACTION, STATE], |
| 100 | + H: COST_ESTIMATES[STATE], |
| 101 | + previousState: Option[STATE], // s |
| 102 | + previousAction: Option[ACTION] // a |
| 103 | +) |
| 104 | + |
| 105 | +object LRTAStarAgentState { |
| 106 | + |
| 107 | + def apply[ACTION, STATE] = |
| 108 | + new LRTAStarAgentState[ACTION, STATE]( |
| 109 | + result = Map.empty, |
| 110 | + H = Map.empty, |
| 111 | + previousState = None, |
| 112 | + previousAction = None |
| 113 | + ) |
| 114 | + |
| 115 | + type RESULT[ACTION, STATE] = Map[STATE, Map[ACTION, STATE]] |
| 116 | + type COST_ESTIMATES[STATE] = Map[STATE, Double] |
| 117 | + |
| 118 | + object Implicits { |
| 119 | + |
| 120 | + implicit class MapOps[K, V](m: Map[K, V]) { |
| 121 | + def put(k: K, v: V): Map[K, V] = |
| 122 | + m.updated(k, v) |
| 123 | + |
| 124 | + def computeIfAbsent(k: K, v: K => V): Map[K, V] = { |
| 125 | + if (m.contains(k)) { |
| 126 | + m |
| 127 | + } else { |
| 128 | + put(k, v(k)) |
| 129 | + } |
| 130 | + } |
| 131 | + |
| 132 | + def transformValue(k: K, fv: Option[V] => V): Map[K, V] = { |
| 133 | + val oldValue = m.get(k) |
| 134 | + val newValue = fv(oldValue) |
| 135 | + m.updated(k, newValue) |
| 136 | + } |
| 137 | + |
| 138 | + } |
| 139 | + |
| 140 | + implicit class Map2Ops[K1, K2, V](m: Map[K1, Map[K2, V]]) { |
| 141 | + def get2(k1: K1, k2: K2): Option[V] = |
| 142 | + m.get(k1).flatMap(_.get(k2)) |
| 143 | + |
| 144 | + } |
| 145 | + |
| 146 | + } |
| 147 | +} |
| 148 | + |
| 149 | +object LRTAStarAgent { |
| 150 | + type IdentifyState[PERCEPT, STATE] = PERCEPT => STATE |
| 151 | +} |
0 commit comments