Skip to content

Commit 54385c7

Browse files
committed
COSMIT featuers -> features typo
1 parent 754c2d9 commit 54385c7

File tree

3 files changed

+6
-6
lines changed

3 files changed

+6
-6
lines changed

examples/cluster/plot_kmeans_stability_low_dim_dense.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ def make_data(random_state, n_samples_per_center, grid_size, scale):
5757
centers = np.array([[i, j]
5858
for i in range(grid_size)
5959
for j in range(grid_size)])
60-
n_clusters_true, n_featues = centers.shape
60+
n_clusters_true, n_features = centers.shape
6161

6262
noise = random_state.normal(
6363
scale=scale, size=(n_samples_per_center, centers.shape[1]))
@@ -88,7 +88,7 @@ def make_data(random_state, n_samples_per_center, grid_size, scale):
8888
X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
8989
for i, n_init in enumerate(n_init_range):
9090
km = factory(n_clusters=n_clusters, init=init, random_state=run_id,
91-
n_init=n_init, **params).fit(X)
91+
n_init=n_init, **params).fit(X)
9292
inertia[i, run_id] = km.inertia_
9393
p = pl.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1))
9494
plots.append(p[0])

sklearn/decomposition/factor_analysis.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ def fit(self, X, y=None):
132132
else:
133133
if len(self.noise_variance_init) != n_features:
134134
raise ValueError("noise_variance_init dimension does not "
135-
"with number of featueres : %d != %d" %
135+
"with number of features : %d != %d" %
136136
(len(self.noise_variance_init), n_features))
137137
psi = np.array(self.noise_variance_init)
138138

sklearn/tests/test_common.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -185,7 +185,7 @@ def test_transformers():
185185
SparseRandomProjection]:
186186
# Due to the jl lemma and very few samples, the number
187187
# of components of the random matrix projection will be greater
188-
# than the number of featuers.
188+
# than the number of features.
189189
# So we impose a smaller number (avoid "auto" mode)
190190
trans.n_components = 1
191191

@@ -255,7 +255,7 @@ def test_transformers_sparse_data():
255255
SparseRandomProjection]:
256256
# Due to the jl lemma and very few samples, the number
257257
# of components of the random matrix projection will be greater
258-
# than the number of featuers.
258+
# than the number of features.
259259
# So we impose a smaller number (avoid "auto" mode)
260260
trans = Trans(n_components=np.int(X.shape[1] / 4))
261261
else:
@@ -312,7 +312,7 @@ def test_estimators_nan_inf():
312312
# Due to the jl lemma and very few samples, the number
313313
# of components of the random matrix projection will be
314314
# greater
315-
# than the number of featuers.
315+
# than the number of features.
316316
# So we impose a smaller number (avoid "auto" mode)
317317
est = Est(n_components=1)
318318

0 commit comments

Comments
 (0)