|
16 | 16 | from sklearn.utils.extmath import density |
17 | 17 | from sklearn.utils.extmath import logsumexp |
18 | 18 | from sklearn.utils.extmath import randomized_svd |
19 | | -from sklearn.utils.extmath import svd_flip |
20 | 19 | from sklearn.utils.extmath import weighted_mode |
21 | 20 | from sklearn.utils.extmath import cartesian |
22 | 21 | from sklearn.datasets.samples_generator import make_low_rank_matrix |
@@ -244,13 +243,8 @@ def test_cartesian(): |
244 | 243 |
|
245 | 244 | def test_randomized_svd_sign_flip(): |
246 | 245 | a = np.array([[2.0, 0.0], [0.0, 1.0]]) |
247 | | - mismatch = False # At least one pair should lead to mismatch |
248 | 246 | u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) |
249 | | - for seed in xrange(100): |
250 | | - u2, s2, v2 = randomized_svd(a, 2, flip_sign=False, random_state=seed) |
251 | | - if np.any(np.sign(u1) != np.sign(u2)): |
252 | | - mismatch = True |
253 | | - u2, s2, v2 = svd_flip(u2, s2, v2) |
| 247 | + for seed in xrange(10): |
| 248 | + u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) |
254 | 249 | assert_almost_equal(u1, u2) |
255 | 250 | assert_almost_equal(v1, v2) |
256 | | - assert_true(mismatch) |
0 commit comments