@@ -56,7 +56,7 @@ The algorithm is a simple way to find the *greatest common divisor* (GCD) of two
5656{% sample lang="scala" %}
5757[ import:3-8, lang="scala"] ( code/scala/euclidean.scala )
5858{% sample lang="racket" %}
59- [ import:3-14, lang="lisp "] ( code/racket/euclidean_algorithm.rkt )
59+ [ import:3-14, lang="racket "] ( code/racket/euclidean_algorithm.rkt )
6060{% sample lang="ruby" %}
6161[ import:8-19, lang="ruby"] ( code/ruby/euclidean.rb )
6262{% sample lang="st" %}
@@ -146,7 +146,7 @@ Modern implementations, though, often use the modulus operator (%) like so
146146{% sample lang="scala" %}
147147[ import:10-14, lang="scala"] ( code/scala/euclidean.scala )
148148{% sample lang="racket" %}
149- [ import:16-24, lang="lisp "] ( code/racket/euclidean_algorithm.rkt )
149+ [ import:16-24, lang="racket "] ( code/racket/euclidean_algorithm.rkt )
150150{% sample lang="ruby" %}
151151[ import:1-6, lang="ruby"] ( code/ruby/euclidean.rb )
152152{% sample lang="st" %}
@@ -252,7 +252,7 @@ and modulo method:
252252{% sample lang="scala" %}
253253[ import, lang="scala"] ( code/scala/euclidean.scala )
254254{% sample lang="racket" %}
255- [ import, lang="lisp "] ( code/racket/euclidean_algorithm.rkt )
255+ [ import, lang="racket "] ( code/racket/euclidean_algorithm.rkt )
256256{% sample lang="ruby" %}
257257[ import, lang="ruby"] ( code/ruby/euclidean.rb )
258258{% sample lang="st" %}
0 commit comments