|
| 1 | +""" |
| 2 | +Obstacle navigation using A* on a toroidal grid |
| 3 | +
|
| 4 | +Author: Daniel Ingram (daniel-s-ingram) |
| 5 | + Tullio Facchinetti ([email protected]) |
| 6 | +""" |
| 7 | +from math import pi |
| 8 | +import numpy as np |
| 9 | +import matplotlib.pyplot as plt |
| 10 | +from matplotlib.colors import from_levels_and_colors |
| 11 | +import sys |
| 12 | + |
| 13 | +plt.ion() |
| 14 | + |
| 15 | +# Simulation parameters |
| 16 | +M = 100 |
| 17 | +obstacles = [[1.75, 0.75, 0.6], [0.55, 1.5, 0.5], [0, -1, 0.7]] |
| 18 | + |
| 19 | + |
| 20 | +def press(event): |
| 21 | + """Exit from the simulation.""" |
| 22 | + if event.key == 'q' or event.key == 'Q': |
| 23 | + print('Quitting upon request.') |
| 24 | + sys.exit(0) |
| 25 | + |
| 26 | +def main(): |
| 27 | + # Arm geometry in the working space |
| 28 | + link_length = [0.5, 1.5] |
| 29 | + initial_link_angle = [0, 0] |
| 30 | + arm = NLinkArm(link_length, initial_link_angle) |
| 31 | + # (x, y) co-ordinates in the joint space [cell] |
| 32 | + start = (10, 50) |
| 33 | + goal = (58, 56) |
| 34 | + grid = get_occupancy_grid(arm, obstacles) |
| 35 | + route = astar_torus(grid, start, goal) |
| 36 | + if len(route) >= 0: |
| 37 | + animate(grid, arm, route) |
| 38 | + |
| 39 | + |
| 40 | +def animate(grid, arm, route): |
| 41 | + fig, axs = plt.subplots(1, 2) |
| 42 | + fig.canvas.mpl_connect('key_press_event', press) |
| 43 | + colors = ['white', 'black', 'red', 'pink', 'yellow', 'green', 'orange'] |
| 44 | + levels = [0, 1, 2, 3, 4, 5, 6, 7] |
| 45 | + cmap, norm = from_levels_and_colors(levels, colors) |
| 46 | + for i, node in enumerate(route): |
| 47 | + plt.subplot(1, 2, 1) |
| 48 | + grid[node] = 6 |
| 49 | + plt.cla() |
| 50 | + plt.imshow(grid, cmap=cmap, norm=norm, interpolation=None) |
| 51 | + theta1 = 2 * pi * node[0] / M - pi |
| 52 | + theta2 = 2 * pi * node[1] / M - pi |
| 53 | + arm.update_joints([theta1, theta2]) |
| 54 | + plt.subplot(1, 2, 2) |
| 55 | + arm.plot(plt, obstacles=obstacles) |
| 56 | + plt.show() |
| 57 | + # Uncomment here to save the sequence of frames |
| 58 | + #plt.savefig('frame{:04d}.png'.format(i)) |
| 59 | + plt.pause(0.1) |
| 60 | + |
| 61 | + |
| 62 | +def detect_collision(line_seg, circle): |
| 63 | + """ |
| 64 | + Determines whether a line segment (arm link) is in contact |
| 65 | + with a circle (obstacle). |
| 66 | + Credit to: http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html |
| 67 | + Args: |
| 68 | + line_seg: List of coordinates of line segment endpoints e.g. [[1, 1], [2, 2]] |
| 69 | + circle: List of circle coordinates and radius e.g. [0, 0, 0.5] is a circle centered |
| 70 | + at the origin with radius 0.5 |
| 71 | +
|
| 72 | + Returns: |
| 73 | + True if the line segment is in contact with the circle |
| 74 | + False otherwise |
| 75 | + """ |
| 76 | + a_vec = np.array([line_seg[0][0], line_seg[0][1]]) |
| 77 | + b_vec = np.array([line_seg[1][0], line_seg[1][1]]) |
| 78 | + c_vec = np.array([circle[0], circle[1]]) |
| 79 | + radius = circle[2] |
| 80 | + line_vec = b_vec - a_vec |
| 81 | + line_mag = np.linalg.norm(line_vec) |
| 82 | + circle_vec = c_vec - a_vec |
| 83 | + proj = circle_vec.dot(line_vec / line_mag) |
| 84 | + if proj <= 0: |
| 85 | + closest_point = a_vec |
| 86 | + elif proj >= line_mag: |
| 87 | + closest_point = b_vec |
| 88 | + else: |
| 89 | + closest_point = a_vec + line_vec * proj / line_mag |
| 90 | + if np.linalg.norm(closest_point - c_vec) > radius: |
| 91 | + return False |
| 92 | + else: |
| 93 | + return True |
| 94 | + |
| 95 | + |
| 96 | +def get_occupancy_grid(arm, obstacles): |
| 97 | + """ |
| 98 | + Discretizes joint space into M values from -pi to +pi |
| 99 | + and determines whether a given coordinate in joint space |
| 100 | + would result in a collision between a robot arm and obstacles |
| 101 | + in its environment. |
| 102 | +
|
| 103 | + Args: |
| 104 | + arm: An instance of NLinkArm |
| 105 | + obstacles: A list of obstacles, with each obstacle defined as a list |
| 106 | + of xy coordinates and a radius. |
| 107 | +
|
| 108 | + Returns: |
| 109 | + Occupancy grid in joint space |
| 110 | + """ |
| 111 | + grid = [[0 for _ in range(M)] for _ in range(M)] |
| 112 | + theta_list = [2 * i * pi / M for i in range(-M // 2, M // 2 + 1)] |
| 113 | + for i in range(M): |
| 114 | + for j in range(M): |
| 115 | + arm.update_joints([theta_list[i], theta_list[j]]) |
| 116 | + points = arm.points |
| 117 | + collision_detected = False |
| 118 | + for k in range(len(points) - 1): |
| 119 | + for obstacle in obstacles: |
| 120 | + line_seg = [points[k], points[k + 1]] |
| 121 | + collision_detected = detect_collision(line_seg, obstacle) |
| 122 | + if collision_detected: |
| 123 | + break |
| 124 | + if collision_detected: |
| 125 | + break |
| 126 | + grid[i][j] = int(collision_detected) |
| 127 | + return np.array(grid) |
| 128 | + |
| 129 | + |
| 130 | +def astar_torus(grid, start_node, goal_node): |
| 131 | + """ |
| 132 | + Finds a path between an initial and goal joint configuration using |
| 133 | + the A* Algorithm on a tororiadal grid. |
| 134 | +
|
| 135 | + Args: |
| 136 | + grid: An occupancy grid (ndarray) |
| 137 | + start_node: Initial joint configuation (tuple) |
| 138 | + goal_node: Goal joint configuration (tuple) |
| 139 | +
|
| 140 | + Returns: |
| 141 | + Obstacle-free route in joint space from start_node to goal_node |
| 142 | + """ |
| 143 | + grid[start_node] = 4 |
| 144 | + grid[goal_node] = 5 |
| 145 | + |
| 146 | + parent_map = [[() for _ in range(M)] for _ in range(M)] |
| 147 | + |
| 148 | + X, Y = np.meshgrid([i for i in range(M)], [i for i in range(M)]) |
| 149 | + heuristic_map = np.abs(X - goal_node[1]) + np.abs(Y - goal_node[0]) |
| 150 | + for i in range(heuristic_map.shape[0]): |
| 151 | + for j in range(heuristic_map.shape[1]): |
| 152 | + heuristic_map[i, j] = min(heuristic_map[i, j], |
| 153 | + i + 1 + heuristic_map[M - 1, j], |
| 154 | + M - i + heuristic_map[0, j], |
| 155 | + j + 1 + heuristic_map[i, M - 1], |
| 156 | + M - j + heuristic_map[i, 0] |
| 157 | + ) |
| 158 | + |
| 159 | + explored_heuristic_map = np.full((M, M), np.inf) |
| 160 | + distance_map = np.full((M, M), np.inf) |
| 161 | + explored_heuristic_map[start_node] = heuristic_map[start_node] |
| 162 | + distance_map[start_node] = 0 |
| 163 | + while True: |
| 164 | + grid[start_node] = 4 |
| 165 | + grid[goal_node] = 5 |
| 166 | + |
| 167 | + current_node = np.unravel_index( |
| 168 | + np.argmin(explored_heuristic_map, axis=None), explored_heuristic_map.shape) |
| 169 | + min_distance = np.min(explored_heuristic_map) |
| 170 | + if (current_node == goal_node) or np.isinf(min_distance): |
| 171 | + break |
| 172 | + |
| 173 | + grid[current_node] = 2 |
| 174 | + explored_heuristic_map[current_node] = np.inf |
| 175 | + |
| 176 | + i, j = current_node[0], current_node[1] |
| 177 | + |
| 178 | + neighbors = [] |
| 179 | + if i - 1 >= 0: |
| 180 | + neighbors.append((i - 1, j)) |
| 181 | + else: |
| 182 | + neighbors.append((M - 1, j)) |
| 183 | + |
| 184 | + if i + 1 < M: |
| 185 | + neighbors.append((i + 1, j)) |
| 186 | + else: |
| 187 | + neighbors.append((0, j)) |
| 188 | + |
| 189 | + if j - 1 >= 0: |
| 190 | + neighbors.append((i, j - 1)) |
| 191 | + else: |
| 192 | + neighbors.append((i, M - 1)) |
| 193 | + |
| 194 | + if j + 1 < M: |
| 195 | + neighbors.append((i, j + 1)) |
| 196 | + else: |
| 197 | + neighbors.append((i, 0)) |
| 198 | + |
| 199 | + for neighbor in neighbors: |
| 200 | + if grid[neighbor] == 0 or grid[neighbor] == 5: |
| 201 | + distance_map[neighbor] = distance_map[current_node] + 1 |
| 202 | + explored_heuristic_map[neighbor] = heuristic_map[neighbor] |
| 203 | + parent_map[neighbor[0]][neighbor[1]] = current_node |
| 204 | + grid[neighbor] = 3 |
| 205 | + ''' |
| 206 | + plt.cla() |
| 207 | + plt.imshow(grid, cmap=cmap, norm=norm, interpolation=None) |
| 208 | + plt.show() |
| 209 | + plt.pause(1e-5) |
| 210 | + ''' |
| 211 | + |
| 212 | + if np.isinf(explored_heuristic_map[goal_node]): |
| 213 | + route = [] |
| 214 | + print("No route found.") |
| 215 | + else: |
| 216 | + route = [goal_node] |
| 217 | + while parent_map[route[0][0]][route[0][1]] is not (): |
| 218 | + route.insert(0, parent_map[route[0][0]][route[0][1]]) |
| 219 | + |
| 220 | + print("The route found covers %d grid cells." % len(route)) |
| 221 | + return route |
| 222 | + |
| 223 | + |
| 224 | +class NLinkArm(object): |
| 225 | + """ |
| 226 | + Class for controlling and plotting a planar arm with an arbitrary number of links. |
| 227 | + """ |
| 228 | + |
| 229 | + def __init__(self, link_lengths, joint_angles): |
| 230 | + self.n_links = len(link_lengths) |
| 231 | + if self.n_links != len(joint_angles): |
| 232 | + raise ValueError() |
| 233 | + |
| 234 | + self.link_lengths = np.array(link_lengths) |
| 235 | + self.joint_angles = np.array(joint_angles) |
| 236 | + self.points = [[0, 0] for _ in range(self.n_links + 1)] |
| 237 | + |
| 238 | + self.lim = sum(link_lengths) |
| 239 | + self.update_points() |
| 240 | + |
| 241 | + def update_joints(self, joint_angles): |
| 242 | + self.joint_angles = joint_angles |
| 243 | + self.update_points() |
| 244 | + |
| 245 | + def update_points(self): |
| 246 | + for i in range(1, self.n_links + 1): |
| 247 | + self.points[i][0] = self.points[i - 1][0] + \ |
| 248 | + self.link_lengths[i - 1] * \ |
| 249 | + np.cos(np.sum(self.joint_angles[:i])) |
| 250 | + self.points[i][1] = self.points[i - 1][1] + \ |
| 251 | + self.link_lengths[i - 1] * \ |
| 252 | + np.sin(np.sum(self.joint_angles[:i])) |
| 253 | + |
| 254 | + self.end_effector = np.array(self.points[self.n_links]).T |
| 255 | + |
| 256 | + def plot(self, myplt, obstacles=[]): |
| 257 | + myplt.cla() |
| 258 | + |
| 259 | + for obstacle in obstacles: |
| 260 | + circle = myplt.Circle( |
| 261 | + (obstacle[0], obstacle[1]), radius=0.5 * obstacle[2], fc='k') |
| 262 | + myplt.gca().add_patch(circle) |
| 263 | + |
| 264 | + for i in range(self.n_links + 1): |
| 265 | + if i is not self.n_links: |
| 266 | + myplt.plot([self.points[i][0], self.points[i + 1][0]], |
| 267 | + [self.points[i][1], self.points[i + 1][1]], 'r-') |
| 268 | + myplt.plot(self.points[i][0], self.points[i][1], 'k.') |
| 269 | + |
| 270 | + myplt.xlim([-self.lim, self.lim]) |
| 271 | + myplt.ylim([-self.lim, self.lim]) |
| 272 | + myplt.draw() |
| 273 | + #myplt.pause(1e-5) |
| 274 | + |
| 275 | + |
| 276 | +if __name__ == '__main__': |
| 277 | + main() |
0 commit comments