|
| 1 | +model: |
| 2 | + base_learning_rate: 3.e-5 |
| 3 | + target: sgm.models.diffusion.DiffusionEngine |
| 4 | + params: |
| 5 | + input_key: latents |
| 6 | + no_log_keys: [audio_emb, fps_id, motion_bucket_id, cond_aug] |
| 7 | + scale_factor: 0.18215 |
| 8 | + disable_first_stage_autocast: True |
| 9 | + ckpt_path: logs/2024-05-28T11-10-27_example_training-svd_interpolation_no_emb/checkpoints/last.ckpt/checkpoint/mp_rank_00_model_states.pt |
| 10 | + remove_keys_from_weights: [] |
| 11 | + compile_model: False |
| 12 | + en_and_decode_n_samples_a_time: 1 |
| 13 | + # optimizer_config: |
| 14 | + # target: deepspeed.ops.adam.DeepSpeedCPUAdam |
| 15 | + |
| 16 | + scheduler_config: |
| 17 | + target: sgm.lr_scheduler.LambdaLinearScheduler |
| 18 | + params: |
| 19 | + warm_up_steps: [1000] |
| 20 | + cycle_lengths: [10000000000000] |
| 21 | + f_start: [1.e-6] |
| 22 | + f_max: [1.] |
| 23 | + f_min: [1.] |
| 24 | + |
| 25 | + to_freeze: [] |
| 26 | + to_unfreeze: [] |
| 27 | + |
| 28 | + # LoRA |
| 29 | + use_lora: False |
| 30 | + lora_config: |
| 31 | + search_class_str: Linear |
| 32 | + target_replace_module: null |
| 33 | + r_linear: 16 |
| 34 | + r_conv: 16 |
| 35 | + loras: null # path to lora .pt |
| 36 | + # verbose: False |
| 37 | + # dropout_p: 0.0 |
| 38 | + # scale: 1.0 |
| 39 | + # search_class: both |
| 40 | + |
| 41 | + denoiser_config: |
| 42 | + target: sgm.modules.diffusionmodules.denoiser.Denoiser |
| 43 | + params: |
| 44 | + scaling_config: |
| 45 | + target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise |
| 46 | + |
| 47 | + # network_wrapper: sgm.modules.diffusionmodules.wrappers.IdentityWrapper |
| 48 | + network_wrapper: |
| 49 | + target: sgm.modules.diffusionmodules.wrappers.InterpolationWrapper |
| 50 | + params: |
| 51 | + im_size: [512, 512] # USER: adapt this to your dataset |
| 52 | + n_channels: 4 |
| 53 | + starting_mask_method: zeros |
| 54 | + add_mask: True |
| 55 | + |
| 56 | + network_config: |
| 57 | + target: sgm.modules.diffusionmodules.video_model.VideoUNet |
| 58 | + params: |
| 59 | + adm_in_channels: 0 |
| 60 | + num_classes: sequential |
| 61 | + use_checkpoint: True |
| 62 | + in_channels: 9 |
| 63 | + out_channels: 4 |
| 64 | + model_channels: 320 |
| 65 | + attention_resolutions: [4, 2, 1] |
| 66 | + num_res_blocks: 2 |
| 67 | + channel_mult: [1, 2, 4, 4] |
| 68 | + num_head_channels: 64 |
| 69 | + use_linear_in_transformer: True |
| 70 | + transformer_depth: 1 |
| 71 | + context_dim: 1024 |
| 72 | + spatial_transformer_attn_type: softmax-xformers |
| 73 | + extra_ff_mix_layer: True |
| 74 | + use_spatial_context: True |
| 75 | + merge_strategy: learned_with_images |
| 76 | + video_kernel_size: [3, 1, 1] |
| 77 | + fine_tuning_method: null |
| 78 | + audio_cond_method: to_time_emb |
| 79 | + additional_audio_frames: 0 |
| 80 | + audio_dim: 768 |
| 81 | + unfreeze_blocks: ["input"] # Because we changed the input block |
| 82 | + # adapter_kwargs: |
| 83 | + # # down_ratio: 1 |
| 84 | + # # adapter_type: null |
| 85 | + # # adapter_weight: null |
| 86 | + # # act_layer: gelu |
| 87 | + # # zero_init_last: True |
| 88 | + # # use_bias: True |
| 89 | + # # adapt_on_time: True |
| 90 | + # # condition_on: space |
| 91 | + # # condition_dim: 1280 |
| 92 | + # target_replace_module: ["SpatialVideoTransformer"] |
| 93 | + # r: 16 |
| 94 | + # loras: null # path to lora .pt |
| 95 | + # verbose: False |
| 96 | + # dropout_p: 0.0 |
| 97 | + # scale: 1.0 |
| 98 | + |
| 99 | + conditioner_config: |
| 100 | + target: sgm.modules.GeneralConditioner |
| 101 | + params: |
| 102 | + emb_models: |
| 103 | + - is_trainable: False |
| 104 | + input_key: cond_frames_without_noise |
| 105 | + ucg_rate: 0.1 |
| 106 | + target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder |
| 107 | + params: |
| 108 | + n_cond_frames: 2 |
| 109 | + n_copies: 1 |
| 110 | + open_clip_embedding_config: |
| 111 | + target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder |
| 112 | + params: |
| 113 | + freeze: True |
| 114 | + |
| 115 | + # - input_key: fps_id |
| 116 | + # is_trainable: False |
| 117 | + # target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
| 118 | + # params: |
| 119 | + # outdim: 256 |
| 120 | + |
| 121 | + # - input_key: motion_bucket_id |
| 122 | + # is_trainable: False |
| 123 | + # target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
| 124 | + # params: |
| 125 | + # outdim: 256 |
| 126 | + |
| 127 | + - input_key: cond_frames |
| 128 | + is_trainable: False |
| 129 | + ucg_rate: 0.1 |
| 130 | + target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder |
| 131 | + params: |
| 132 | + disable_encoder_autocast: True |
| 133 | + n_cond_frames: 2 |
| 134 | + n_copies: 1 |
| 135 | + is_ae: True |
| 136 | + load_encoder: False |
| 137 | + encoder_config: |
| 138 | + target: sgm.models.autoencoder.AutoencoderKLModeOnly |
| 139 | + params: |
| 140 | + embed_dim: 4 |
| 141 | + monitor: val/rec_loss |
| 142 | + ddconfig: |
| 143 | + attn_type: vanilla-xformers |
| 144 | + double_z: True |
| 145 | + z_channels: 4 |
| 146 | + resolution: 256 |
| 147 | + in_channels: 3 |
| 148 | + out_ch: 3 |
| 149 | + ch: 128 |
| 150 | + ch_mult: [1, 2, 4, 4] |
| 151 | + num_res_blocks: 2 |
| 152 | + attn_resolutions: [] |
| 153 | + dropout: 0.0 |
| 154 | + lossconfig: |
| 155 | + target: torch.nn.Identity |
| 156 | + |
| 157 | + # - input_key: cond_aug |
| 158 | + # is_trainable: False |
| 159 | + # target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
| 160 | + # params: |
| 161 | + # outdim: 256 |
| 162 | + |
| 163 | + - input_key: audio_emb |
| 164 | + is_trainable: True |
| 165 | + ucg_rate: 0.2 |
| 166 | + target: sgm.modules.encoders.modules.WhisperAudioEmbedder |
| 167 | + params: |
| 168 | + merge_method: mean |
| 169 | + linear_dim: null |
| 170 | + |
| 171 | + first_stage_config: |
| 172 | + target: sgm.models.autoencoder.AutoencodingEngine |
| 173 | + params: |
| 174 | + loss_config: |
| 175 | + target: torch.nn.Identity |
| 176 | + regularizer_config: |
| 177 | + target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer |
| 178 | + encoder_config: |
| 179 | + target: sgm.modules.diffusionmodules.model.Encoder |
| 180 | + params: |
| 181 | + attn_type: vanilla |
| 182 | + double_z: True |
| 183 | + z_channels: 4 |
| 184 | + resolution: 256 |
| 185 | + in_channels: 3 |
| 186 | + out_ch: 3 |
| 187 | + ch: 128 |
| 188 | + ch_mult: [1, 2, 4, 4] |
| 189 | + num_res_blocks: 2 |
| 190 | + attn_resolutions: [] |
| 191 | + dropout: 0.0 |
| 192 | + decoder_config: |
| 193 | + target: sgm.modules.autoencoding.temporal_ae.VideoDecoder |
| 194 | + params: |
| 195 | + attn_type: vanilla |
| 196 | + double_z: True |
| 197 | + z_channels: 4 |
| 198 | + resolution: 256 |
| 199 | + in_channels: 3 |
| 200 | + out_ch: 3 |
| 201 | + ch: 128 |
| 202 | + ch_mult: [1, 2, 4, 4] |
| 203 | + num_res_blocks: 2 |
| 204 | + attn_resolutions: [] |
| 205 | + dropout: 0.0 |
| 206 | + video_kernel_size: [3, 1, 1] |
| 207 | + |
| 208 | + sampler_config: |
| 209 | + target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler |
| 210 | + params: |
| 211 | + num_steps: 10 |
| 212 | + discretization_config: |
| 213 | + target: sgm.modules.diffusionmodules.discretizer.AYSDiscretization |
| 214 | + # params: |
| 215 | + # # sigma_max: 700.0 |
| 216 | + |
| 217 | + guider_config: |
| 218 | + target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider |
| 219 | + params: |
| 220 | + max_scale: 2.5 |
| 221 | + min_scale: 1.0 |
| 222 | + num_frames: 14 |
| 223 | + |
| 224 | + loss_fn_config: |
| 225 | + target: sgm.modules.diffusionmodules.loss.StandardWithLipLoss |
| 226 | + params: |
| 227 | + lambda_lower: 1. |
| 228 | + weight_path: /data/home/antoni/code/generative-models/checkpoints/vsr_trlrs3_base.max400.pth |
| 229 | + batch2model_keys: |
| 230 | + - image_only_indicator |
| 231 | + - num_video_frames |
| 232 | + loss_weighting_config: |
| 233 | + # target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting |
| 234 | + target: sgm.modules.diffusionmodules.loss_weighting.VWeighting |
| 235 | + sigma_sampler_config: |
| 236 | + target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling |
| 237 | + params: |
| 238 | + # p_mean: 0.7 |
| 239 | + # p_std: 1.6 |
| 240 | + p_mean: 1. |
| 241 | + p_std: 1.2 |
| 242 | + |
| 243 | +data: |
| 244 | + target: sgm.data.video_datamodule_latent.VideoDataModule |
| 245 | + params: |
| 246 | + train: |
| 247 | + datapipeline: |
| 248 | + # urls: |
| 249 | + # # USER: adapt this path the root of your custom dataset |
| 250 | + # - /data2/Datasets/LRW/webdata/train/out-{000000..000004}.tar |
| 251 | + # pipeline_config: |
| 252 | + # shardshuffle: 10000 |
| 253 | + # sample_shuffle: 100 # USER: you might wanna adapt depending on your available RAM |
| 254 | + |
| 255 | + # decoders: |
| 256 | + # - custom |
| 257 | + # postprocessors: |
| 258 | + # - target: sdata.mappers.SelectTuple |
| 259 | + # params: |
| 260 | + # key: 'mp4' # USER: you might wanna adapt this for your custom dataset |
| 261 | + # index: 0 |
| 262 | + # - target: sdata.mappers.ToSVDFormat |
| 263 | + # params: |
| 264 | + # key: mp4 |
| 265 | + # audio_key: pt |
| 266 | + # n_frames: 14 |
| 267 | + # resize_size: 320 |
| 268 | + # motion_id: 60 |
| 269 | + # fps: 24 # FPS - 1 See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188 |
| 270 | + # cond_noise: [-3.0, 0.5] |
| 271 | + # mode: interpolation |
| 272 | + # filelist: /vol/paramonos2/projects/antoni/datasets/HDTF/filelist_videos_train.txt |
| 273 | + filelist: /fsx/rs2517/data/lists/HDTF/filelist_videos_train.txt |
| 274 | + resize_size: 512 |
| 275 | + audio_folder: /fsx/rs2517/data/HDTF/audio |
| 276 | + video_folder: /fsx/rs2517/data/HDTF/cropped_videos_original |
| 277 | + lip_emb_folder: /fsx/antoni/data/HDTF/lipemb |
| 278 | + landmarks_folder: null |
| 279 | + video_extension: .mp4 |
| 280 | + audio_extension: .wav |
| 281 | + latent_folder: null |
| 282 | + audio_in_video: False |
| 283 | + audio_rate: 16000 |
| 284 | + num_frames: 14 |
| 285 | + need_cond: True |
| 286 | + mode: interpolation |
| 287 | + use_latent: True |
| 288 | + latent_type: video |
| 289 | + latent_scale: 1 # For backwards compatibility |
| 290 | + from_audio_embedding: True |
| 291 | + load_all_possible_indexes: True |
| 292 | + audio_emb_type: wav2vec2 |
| 293 | + # cond_noise: [-3.0, 0.5] |
| 294 | + cond_noise: 0. |
| 295 | + motion_id: 125 |
| 296 | + data_mean: null |
| 297 | + data_std: null |
| 298 | + use_latent_condition: True |
| 299 | + get_lip_emb: True |
| 300 | + get_landmarks: True |
| 301 | + |
| 302 | + loader: |
| 303 | + batch_size: 1 |
| 304 | + num_workers: 6 |
| 305 | + drop_last: True |
| 306 | + pin_memory: True |
| 307 | + persistent_workers: True |
| 308 | + # collation_fn: |
| 309 | + # target: sgm.data.collates.collate_video |
| 310 | + # params: |
| 311 | + # merge_keys: [frames] |
| 312 | + |
| 313 | + # validation: |
| 314 | + |
| 315 | + # datapipeline: |
| 316 | + # urls: |
| 317 | + # # USER: adapt this path the root of your custom dataset |
| 318 | + # - /data/122-2/Datasets/CREMA/webdataset/val/out-{000000..000001}.tar |
| 319 | + # pipeline_config: |
| 320 | + # shardshuffle: 10000 |
| 321 | + # sample_shuffle: 1000 # USER: you might wanna adapt depending on your available RAM |
| 322 | + |
| 323 | + # decoders: |
| 324 | + # - video |
| 325 | + # postprocessors: |
| 326 | + # - target: sdata.mappers.SelectTuple |
| 327 | + # params: |
| 328 | + # key: 'mp4' # USER: you might wanna adapt this for your custom dataset |
| 329 | + # index: 0 |
| 330 | + # - target: sdata.mappers.ToSVDFormat |
| 331 | + # params: |
| 332 | + # key: mp4 |
| 333 | + # n_frames: 14 |
| 334 | + # resize_size: 256 |
| 335 | + # cond_noise: [-3.0, 0.5] |
| 336 | + |
| 337 | + # loader: |
| 338 | + # batch_size: 2 |
| 339 | + # num_workers: 6 |
| 340 | + |
| 341 | +lightning: |
| 342 | + modelcheckpoint: |
| 343 | + params: |
| 344 | + every_n_train_steps: 5000 |
| 345 | + save_top_k: 1 |
| 346 | + |
| 347 | + callbacks: |
| 348 | + metrics_over_trainsteps_checkpoint: |
| 349 | + params: |
| 350 | + every_n_train_steps: 25000 |
| 351 | + |
| 352 | + video_logger: |
| 353 | + target: sgm.callbacks.video_logger.VideoLogger |
| 354 | + params: |
| 355 | + disabled: False |
| 356 | + enable_autocast: False |
| 357 | + batch_frequency: 1000 |
| 358 | + max_videos: 1 |
| 359 | + increase_log_steps: False |
| 360 | + log_first_step: True |
| 361 | + log_videos_kwargs: |
| 362 | + ucg_keys: [cond_frames, cond_frames_without_noise, audio_emb] |
| 363 | + use_ema_scope: False |
| 364 | + N: 1 |
| 365 | + n_rows: 1 |
| 366 | + |
| 367 | + trainer: |
| 368 | + devices: -1 |
| 369 | + benchmark: False |
| 370 | + num_sanity_val_steps: 1 |
| 371 | + accumulate_grad_batches: 1 |
| 372 | + max_epochs: 1000 |
| 373 | + precision: bf16-mixed |
| 374 | + num_nodes: 1 |
0 commit comments