|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "5483e876", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "### 什么是 RLHF(Reinforcement Learning from Human Feedback)\n", |
| 9 | + "\n", |
| 10 | + "RLHF 是用“人类偏好”来对大语言模型进行对齐的一套训练范式:先让模型会做事,再让模型知道“什么更好”,最后用强化学习把“更好”的偏好真正优化进生成策略里。\n", |
| 11 | + "\n", |
| 12 | + "- **目标**:让模型更符合人类意图、更安全、更有用\n", |
| 13 | + "- **核心思想**:\n", |
| 14 | + " - 用监督微调(SFT)教会模型基本的指令跟随\n", |
| 15 | + " - 用偏好数据训练奖励模型(RM),学会打分“更好/更差”的回答\n", |
| 16 | + " - 用强化学习(PPO)在奖励信号下优化策略,权衡质量、稳定性与多样性\n", |
| 17 | + "- **关键组件**:指令数据、偏好数据(A/B 对比)、奖励模型、强化学习算法、KL 约束/参考策略\n", |
| 18 | + "- **典型产物**:\n", |
| 19 | + " - SFT 模型(会做事)\n", |
| 20 | + " - RM 奖励模型(会打分)\n", |
| 21 | + " - PPO 后的对齐模型(做得更好)\n", |
| 22 | + " - DPO (取缔RM+PPO)\n" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "id": "59ff10f6", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "### 三、RLHF 的三阶段流程(工程化视角)\n", |
| 31 | + "\n", |
| 32 | + "| 阶段 | 名称 | 作用 | 技术 |\n", |
| 33 | + "|---|---|---|---|\n", |
| 34 | + "| 1️⃣ | SFT(监督微调) | 教模型执行指令 | CrossEntropyLoss |\n", |
| 35 | + "| 2️⃣ | Reward Model 训练 | 学会“什么样的回答更好” | Pairwise ranking (A > B) |\n", |
| 36 | + "| 3️⃣ | PPO 强化优化 | 用奖励信号优化生成策略 | PPO 算法(Policy Gradient) |\n", |
| 37 | + "\n", |
| 38 | + "#### 1️⃣ SFT(监督微调)\n", |
| 39 | + "- **输入**:指令-回答对(高质量、人类书写/筛选)\n", |
| 40 | + "- **目标**:让模型基本学会“按指令作答”\n", |
| 41 | + "- **训练**:最小化交叉熵损失(参考常用指令数据集)\n", |
| 42 | + "- **输出**:SFT 模型(作为后续 RM/PPO 的参考策略)\n", |
| 43 | + "\n", |
| 44 | + "#### 2️⃣ 奖励模型(RM)训练\n", |
| 45 | + "- **输入**:同一指令下成对回答(A、B),以及偏好标签(A > B)\n", |
| 46 | + "- **目标**:学习“偏好评分函数” r(x, y)\n", |
| 47 | + "- **训练**:Pairwise ranking(如 Bradley–Terry/Logistic loss)\n", |
| 48 | + "- **输出**:能对任意回答打分的奖励模型\n", |
| 49 | + "\n", |
| 50 | + "#### 3️⃣ PPO 强化优化\n", |
| 51 | + "- **输入**:SFT 模型作为初始策略 π_θ,奖励模型 r 作为奖励信号\n", |
| 52 | + "- **目标**:在 KL 约束下最大化期望奖励,提升对齐度与有用性\n", |
| 53 | + "- **训练**:PPO(剪切策略梯度),引入 KL 惩罚以保持与参考策略接近\n", |
| 54 | + "- **输出**:PPO 后的对齐模型(更符合人类偏好)\n", |
| 55 | + "\n", |
| 56 | + "> 实践要点:高质量偏好数据与稳定的 KL 控制是成功关键;监控长度偏置、模式坍缩与过拟合。\n", |
| 57 | + "\n", |
| 58 | + "#### DPO(Direct Preference Optimization)\n", |
| 59 | + "- **定位**:作为第 3 阶段(PPO)的常见替代方案,用偏好对直接优化策略。\n", |
| 60 | + "- **核心**:基于 `(x, y_pos, y_neg)` 提高 `y_pos` 概率、降低 `y_neg`,并以参考策略 `π_ref` 的对数概率差作隐式 KL 约束。\n", |
| 61 | + "- **直观目标**:最小化 `-log σ(β[(log πθ(y_pos|x) - log πθ(y_neg|x)) - (log πref(y_pos|x) - log πref(y_neg|x))])`\n", |
| 62 | + "- **优点**:流程简单、无奖励模型与 RL 回路、稳定易复现、吞吐高。\n", |
| 63 | + "- **局限**:依赖高质量偏好数据;极端分布迁移下可控性较弱。\n" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "markdown", |
| 68 | + "id": "777789fd", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "### 实验设置:模型与数据集选择\n", |
| 72 | + "\n", |
| 73 | + "- 模型:`Qwen2.5-1.5B-Instruct`(中文指令能力强,小参数、易于 LoRA/QLoRA)\n", |
| 74 | + "- SFT 数据:`BelleGroup/train_0.5M_CN`(中文指令-回答对,体量适中,可采样)\n", |
| 75 | + "- 偏好数据(用于 DPO/RM):`argilla/ultrafeedback-binarized-preferences`(成对偏好,易直接用于 DPO)\n", |
| 76 | + "\n", |
| 77 | + "下面先安装依赖并加载模型、抽样加载 SFT 数据(少量样本用于快速跑通)。\n" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": 1, |
| 83 | + "id": "8be2dae1", |
| 84 | + "metadata": {}, |
| 85 | + "outputs": [ |
| 86 | + { |
| 87 | + "name": "stdout", |
| 88 | + "output_type": "stream", |
| 89 | + "text": [ |
| 90 | + "zsh:1: 4.44.0 not found\n", |
| 91 | + "Note: you may need to restart the kernel to use updated packages.\n" |
| 92 | + ] |
| 93 | + } |
| 94 | + ], |
| 95 | + "source": [ |
| 96 | + "# 安装依赖(仅需首次)\n", |
| 97 | + "%pip -q install transformers>=4.44.0 accelerate datasets peft bitsandbytes trl>=0.9.6 sentencepiece\n", |
| 98 | + "\n" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "id": "9a054388", |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "name": "stdout", |
| 109 | + "output_type": "stream", |
| 110 | + "text": [ |
| 111 | + "[Info] CUDA 不可用,跳过 bitsandbytes 量化,改用 MPS/CPU.\n" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "data": { |
| 116 | + "application/vnd.jupyter.widget-view+json": { |
| 117 | + "model_id": "39701511a03045a9894de1a2d23a975b", |
| 118 | + "version_major": 2, |
| 119 | + "version_minor": 0 |
| 120 | + }, |
| 121 | + "text/plain": [ |
| 122 | + "tokenizer_config.json: 0.00B [00:00, ?B/s]" |
| 123 | + ] |
| 124 | + }, |
| 125 | + "metadata": {}, |
| 126 | + "output_type": "display_data" |
| 127 | + }, |
| 128 | + { |
| 129 | + "data": { |
| 130 | + "application/vnd.jupyter.widget-view+json": { |
| 131 | + "model_id": "819e26a2ee33465cb0172f7968969ebf", |
| 132 | + "version_major": 2, |
| 133 | + "version_minor": 0 |
| 134 | + }, |
| 135 | + "text/plain": [ |
| 136 | + "vocab.json: 0.00B [00:00, ?B/s]" |
| 137 | + ] |
| 138 | + }, |
| 139 | + "metadata": {}, |
| 140 | + "output_type": "display_data" |
| 141 | + }, |
| 142 | + { |
| 143 | + "data": { |
| 144 | + "application/vnd.jupyter.widget-view+json": { |
| 145 | + "model_id": "e59697db756a4b37bc7b25282bb87f48", |
| 146 | + "version_major": 2, |
| 147 | + "version_minor": 0 |
| 148 | + }, |
| 149 | + "text/plain": [ |
| 150 | + "merges.txt: 0.00B [00:00, ?B/s]" |
| 151 | + ] |
| 152 | + }, |
| 153 | + "metadata": {}, |
| 154 | + "output_type": "display_data" |
| 155 | + }, |
| 156 | + { |
| 157 | + "data": { |
| 158 | + "application/vnd.jupyter.widget-view+json": { |
| 159 | + "model_id": "89992a0d96104244a1aa1d9e54d3a999", |
| 160 | + "version_major": 2, |
| 161 | + "version_minor": 0 |
| 162 | + }, |
| 163 | + "text/plain": [ |
| 164 | + "tokenizer.json: 0.00B [00:00, ?B/s]" |
| 165 | + ] |
| 166 | + }, |
| 167 | + "metadata": {}, |
| 168 | + "output_type": "display_data" |
| 169 | + }, |
| 170 | + { |
| 171 | + "data": { |
| 172 | + "application/vnd.jupyter.widget-view+json": { |
| 173 | + "model_id": "8974f32f9d1c4528a9c22ba13d1e69f7", |
| 174 | + "version_major": 2, |
| 175 | + "version_minor": 0 |
| 176 | + }, |
| 177 | + "text/plain": [ |
| 178 | + "config.json: 0%| | 0.00/660 [00:00<?, ?B/s]" |
| 179 | + ] |
| 180 | + }, |
| 181 | + "metadata": {}, |
| 182 | + "output_type": "display_data" |
| 183 | + }, |
| 184 | + { |
| 185 | + "data": { |
| 186 | + "application/vnd.jupyter.widget-view+json": { |
| 187 | + "model_id": "43f58ab1594d429b9b3e2e120af1f90e", |
| 188 | + "version_major": 2, |
| 189 | + "version_minor": 0 |
| 190 | + }, |
| 191 | + "text/plain": [ |
| 192 | + "model.safetensors: 0%| | 0.00/3.09G [00:00<?, ?B/s]" |
| 193 | + ] |
| 194 | + }, |
| 195 | + "metadata": {}, |
| 196 | + "output_type": "display_data" |
| 197 | + } |
| 198 | + ], |
| 199 | + "source": [ |
| 200 | + "import os\n", |
| 201 | + "import torch\n", |
| 202 | + "from transformers import AutoTokenizer, AutoModelForCausalLM\n", |
| 203 | + "\n", |
| 204 | + "model_name = \"Qwen/Qwen2.5-1.5B-Instruct\"\n", |
| 205 | + "\n", |
| 206 | + "use_cuda = torch.cuda.is_available()\n", |
| 207 | + "use_mps = torch.backends.mps.is_available()\n", |
| 208 | + "\n", |
| 209 | + "quant_config = None\n", |
| 210 | + "try:\n", |
| 211 | + " if use_cuda:\n", |
| 212 | + " from transformers import BitsAndBytesConfig # 仅在 CUDA 下尝试 4bit\n", |
| 213 | + " import importlib.metadata as im\n", |
| 214 | + " im.version(\"bitsandbytes\") # 检查安装\n", |
| 215 | + " quant_config = BitsAndBytesConfig(\n", |
| 216 | + " load_in_4bit=True,\n", |
| 217 | + " bnb_4bit_quant_type=\"nf4\",\n", |
| 218 | + " bnb_4bit_use_double_quant=True,\n", |
| 219 | + " bnb_4bit_compute_dtype=torch.bfloat16,\n", |
| 220 | + " )\n", |
| 221 | + " print(\"[Info] Using bitsandbytes 4-bit on CUDA.\")\n", |
| 222 | + " else:\n", |
| 223 | + " print(\"[Info] CUDA 不可用,跳过 bitsandbytes 量化,改用 MPS/CPU.\")\n", |
| 224 | + "except Exception as e:\n", |
| 225 | + " print(f\"[Warn] bitsandbytes 不可用或未安装:{e}. 将使用非量化加载。\")\n", |
| 226 | + "\n", |
| 227 | + "# 设备映射\n", |
| 228 | + "if use_cuda:\n", |
| 229 | + " device_map = \"auto\"\n", |
| 230 | + " dtype = torch.bfloat16\n", |
| 231 | + "elif use_mps:\n", |
| 232 | + " device_map = {\"\": \"mps\"}\n", |
| 233 | + " dtype = torch.float16\n", |
| 234 | + "else:\n", |
| 235 | + " device_map = {\"\": \"cpu\"}\n", |
| 236 | + " dtype = torch.float32\n", |
| 237 | + "\n", |
| 238 | + "# 加载 tokenizer / model(按可用性量化)\n", |
| 239 | + "tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, trust_remote_code=True)\n", |
| 240 | + "\n", |
| 241 | + "load_kwargs = dict(\n", |
| 242 | + " device_map=device_map,\n", |
| 243 | + " torch_dtype=dtype,\n", |
| 244 | + " trust_remote_code=True,\n", |
| 245 | + ")\n", |
| 246 | + "if quant_config is not None:\n", |
| 247 | + " load_kwargs[\"quantization_config\"] = quant_config\n", |
| 248 | + "\n", |
| 249 | + "model = AutoModelForCausalLM.from_pretrained(model_name, **load_kwargs)\n", |
| 250 | + "\n", |
| 251 | + "print(f\"[Device] cuda={use_cuda}, mps={use_mps}, dtype={dtype}\")\n", |
| 252 | + "\n", |
| 253 | + "# 快速自检\n", |
| 254 | + "inputs = tokenizer(\"你好,简要介绍一下你自己。\", return_tensors=\"pt\")\n", |
| 255 | + "if use_mps:\n", |
| 256 | + " inputs = {k: v.to(\"mps\") for k, v in inputs.items()}\n", |
| 257 | + "else:\n", |
| 258 | + " inputs = {k: v.to(model.device) for k, v in inputs.items()}\n", |
| 259 | + "\n", |
| 260 | + "with torch.inference_mode():\n", |
| 261 | + " out = model.generate(**inputs, max_new_tokens=64, do_sample=False)\n", |
| 262 | + "print(tokenizer.decode(out[0], skip_special_tokens=True))\n", |
| 263 | + "\n" |
| 264 | + ] |
| 265 | + }, |
| 266 | + { |
| 267 | + "cell_type": "code", |
| 268 | + "execution_count": null, |
| 269 | + "id": "7715e506", |
| 270 | + "metadata": {}, |
| 271 | + "outputs": [], |
| 272 | + "source": [ |
| 273 | + "from datasets import load_dataset\n", |
| 274 | + "\n", |
| 275 | + "def _to_sft(example):\n", |
| 276 | + " instr = example.get(\"instruction\", \"\")\n", |
| 277 | + " inp = example.get(\"input\", \"\")\n", |
| 278 | + " output = example.get(\"output\", None)\n", |
| 279 | + " prompt = (instr + (\"\\n\" + inp if inp else \"\")).strip()\n", |
| 280 | + " return {\"prompt\": prompt, \"response\": output}\n", |
| 281 | + "\n", |
| 282 | + "# SFT:抽样加载 BELLE 中文指令数据\n", |
| 283 | + "sft_ds = load_dataset(\"BelleGroup/train_0.5M_CN\", split=\"train[:2000]\")\n", |
| 284 | + "sft_ds = sft_ds.map(_to_sft, remove_columns=sft_ds.column_names)\n", |
| 285 | + "print(\"SFT 样本示例:\", sft_ds[0])\n", |
| 286 | + "\n", |
| 287 | + "# 偏好数据:UltraFeedback(用于 DPO/RM)\n", |
| 288 | + "pref = load_dataset(\"argilla/ultrafeedback-binarized-preferences\", split=\"train[:5000]\")\n", |
| 289 | + "\n", |
| 290 | + "def _to_pref(ex):\n", |
| 291 | + " prompt = ex.get(\"prompt\") or ex.get(\"question\") or ex.get(\"instruction\")\n", |
| 292 | + " y_pos = ex.get(\"chosen\") or ex.get(\"better_response\")\n", |
| 293 | + " y_neg = ex.get(\"rejected\") or ex.get(\"worse_response\")\n", |
| 294 | + " return {\"prompt\": prompt, \"y_pos\": y_pos, \"y_neg\": y_neg}\n", |
| 295 | + "\n", |
| 296 | + "pref = pref.map(_to_pref)\n", |
| 297 | + "pref = pref.filter(lambda e: e[\"prompt\"] and e[\"y_pos\"] and e[\"y_neg\"]) # 保留完整样本\n", |
| 298 | + "print(\"偏好样本示例:\", {k: pref[0][k][:60] + \"...\" for k in [\"prompt\", \"y_pos\", \"y_neg\"]})\n", |
| 299 | + "\n" |
| 300 | + ] |
| 301 | + }, |
| 302 | + { |
| 303 | + "cell_type": "code", |
| 304 | + "execution_count": null, |
| 305 | + "id": "5f63aa6f", |
| 306 | + "metadata": {}, |
| 307 | + "outputs": [], |
| 308 | + "source": [] |
| 309 | + } |
| 310 | + ], |
| 311 | + "metadata": { |
| 312 | + "kernelspec": { |
| 313 | + "display_name": "base", |
| 314 | + "language": "python", |
| 315 | + "name": "python3" |
| 316 | + }, |
| 317 | + "language_info": { |
| 318 | + "codemirror_mode": { |
| 319 | + "name": "ipython", |
| 320 | + "version": 3 |
| 321 | + }, |
| 322 | + "file_extension": ".py", |
| 323 | + "mimetype": "text/x-python", |
| 324 | + "name": "python", |
| 325 | + "nbconvert_exporter": "python", |
| 326 | + "pygments_lexer": "ipython3", |
| 327 | + "version": "3.11.7" |
| 328 | + } |
| 329 | + }, |
| 330 | + "nbformat": 4, |
| 331 | + "nbformat_minor": 5 |
| 332 | +} |
0 commit comments