|
| 1 | +""" |
| 2 | +
|
| 3 | +Object shape recognition with rectangle fitting |
| 4 | +
|
| 5 | +author: Atsushi Sakai (@Atsushi_twi) |
| 6 | +
|
| 7 | +""" |
| 8 | + |
| 9 | +import matplotlib.pyplot as plt |
| 10 | +import math |
| 11 | +import random |
| 12 | +import numpy as np |
| 13 | + |
| 14 | +show_animation = True |
| 15 | + |
| 16 | + |
| 17 | +class VehicleSimulator(): |
| 18 | + |
| 19 | + def __init__(self, ix, iy, iyaw, iv, max_v, w, L): |
| 20 | + self.x = ix |
| 21 | + self.y = iy |
| 22 | + self.yaw = iyaw |
| 23 | + self.v = iv |
| 24 | + self.max_v = max_v |
| 25 | + self.W = w |
| 26 | + self.L = L |
| 27 | + self._calc_vehicle_contour() |
| 28 | + |
| 29 | + def update(self, dt, a, omega): |
| 30 | + self.x += self.v * math.cos(self.yaw) * dt |
| 31 | + self.y += self.v * math.sin(self.yaw) * dt |
| 32 | + self.yaw += omega * dt |
| 33 | + self.v += a * dt |
| 34 | + if self.v >= self.max_v: |
| 35 | + self.v = self.max_v |
| 36 | + |
| 37 | + def plot(self): |
| 38 | + plt.plot(self.x, self.y, ".r") |
| 39 | + |
| 40 | + # convert global coordinate |
| 41 | + gx, gy = self.calc_global_contour() |
| 42 | + plt.plot(gx, gy, "-xr") |
| 43 | + |
| 44 | + def calc_global_contour(self): |
| 45 | + gx = [(ix * math.cos(self.yaw) + iy * math.sin(self.yaw)) + |
| 46 | + self.x for (ix, iy) in zip(self.vc_x, self.vc_y)] |
| 47 | + gy = [(ix * math.sin(self.yaw) - iy * math.cos(self.yaw)) + |
| 48 | + self.y for (ix, iy) in zip(self.vc_x, self.vc_y)] |
| 49 | + |
| 50 | + return gx, gy |
| 51 | + |
| 52 | + def _calc_vehicle_contour(self): |
| 53 | + |
| 54 | + self.vc_x = [] |
| 55 | + self.vc_y = [] |
| 56 | + |
| 57 | + self.vc_x.append(self.L / 2.0) |
| 58 | + self.vc_y.append(self.W / 2.0) |
| 59 | + |
| 60 | + self.vc_x.append(self.L / 2.0) |
| 61 | + self.vc_y.append(-self.W / 2.0) |
| 62 | + |
| 63 | + self.vc_x.append(-self.L / 2.0) |
| 64 | + self.vc_y.append(-self.W / 2.0) |
| 65 | + |
| 66 | + self.vc_x.append(-self.L / 2.0) |
| 67 | + self.vc_y.append(self.W / 2.0) |
| 68 | + |
| 69 | + self.vc_x.append(self.L / 2.0) |
| 70 | + self.vc_y.append(self.W / 2.0) |
| 71 | + |
| 72 | + self.vc_x, self.vc_y = self._interporate(self.vc_x, self.vc_y) |
| 73 | + |
| 74 | + def _interporate(self, x, y): |
| 75 | + rx, ry = [], [] |
| 76 | + dtheta = 0.05 |
| 77 | + for i in range(len(x) - 1): |
| 78 | + rx.extend([(1.0 - θ) * x[i] + θ * x[i + 1] |
| 79 | + for θ in np.arange(0.0, 1.0, dtheta)]) |
| 80 | + ry.extend([(1.0 - θ) * y[i] + θ * y[i + 1] |
| 81 | + for θ in np.arange(0.0, 1.0, dtheta)]) |
| 82 | + |
| 83 | + rx.extend([(1.0 - θ) * x[len(x) - 1] + θ * x[1] |
| 84 | + for θ in np.arange(0.0, 1.0, dtheta)]) |
| 85 | + ry.extend([(1.0 - θ) * y[len(y) - 1] + θ * y[1] |
| 86 | + for θ in np.arange(0.0, 1.0, dtheta)]) |
| 87 | + |
| 88 | + return rx, ry |
| 89 | + |
| 90 | + |
| 91 | +def get_observation_points(vlist, angle_reso): |
| 92 | + x, y, angle, r = [], [], [], [] |
| 93 | + |
| 94 | + # store all points |
| 95 | + for v in vlist: |
| 96 | + |
| 97 | + gx, gy = v.calc_global_contour() |
| 98 | + |
| 99 | + for vx, vy in zip(gx, gy): |
| 100 | + vangle = math.atan2(vy, vx) |
| 101 | + vr = math.hypot(vx, vy) # * random.uniform(0.95, 1.05) |
| 102 | + |
| 103 | + x.append(vx) |
| 104 | + y.append(vy) |
| 105 | + angle.append(vangle) |
| 106 | + r.append(vr) |
| 107 | + |
| 108 | + # ray casting filter |
| 109 | + rx, ry = ray_casting_filter(x, y, angle, r, angle_reso) |
| 110 | + |
| 111 | + return rx, ry |
| 112 | + |
| 113 | + |
| 114 | +def ray_casting_filter(xl, yl, thetal, rangel, angle_reso): |
| 115 | + rx, ry = [], [] |
| 116 | + rangedb = [float("inf") for _ in range( |
| 117 | + int(math.floor((math.pi * 2.0) / angle_reso)) + 1)] |
| 118 | + |
| 119 | + for i in range(len(thetal)): |
| 120 | + angleid = int(round(thetal[i] / angle_reso)) |
| 121 | + |
| 122 | + if rangedb[angleid] > rangel[i]: |
| 123 | + rangedb[angleid] = rangel[i] |
| 124 | + |
| 125 | + for i in range(len(rangedb)): |
| 126 | + t = i * angle_reso |
| 127 | + if rangedb[i] != float("inf"): |
| 128 | + rx.append(rangedb[i] * math.cos(t)) |
| 129 | + ry.append(rangedb[i] * math.sin(t)) |
| 130 | + |
| 131 | + return rx, ry |
| 132 | + |
| 133 | + |
| 134 | +def main(): |
| 135 | + |
| 136 | + # simulation parameters |
| 137 | + simtime = 30.0 # simulation time |
| 138 | + dt = 0.2 # time tick |
| 139 | + |
| 140 | + angle_reso = np.deg2rad(3.0) # sensor angle resolution |
| 141 | + |
| 142 | + v1 = VehicleSimulator(-10.0, 0.0, np.deg2rad(90.0), |
| 143 | + 0.0, 50.0 / 3.6, 3.0, 5.0) |
| 144 | + v2 = VehicleSimulator(20.0, 10.0, np.deg2rad(180.0), |
| 145 | + 0.0, 50.0 / 3.6, 4.0, 10.0) |
| 146 | + |
| 147 | + time = 0.0 |
| 148 | + while time <= simtime: |
| 149 | + time += dt |
| 150 | + |
| 151 | + v1.update(dt, 0.1, 0.0) |
| 152 | + v2.update(dt, 0.1, -0.05) |
| 153 | + |
| 154 | + ox, oy = get_observation_points([v1, v2], angle_reso) |
| 155 | + |
| 156 | + if show_animation: # pragma: no cover |
| 157 | + plt.cla() |
| 158 | + plt.axis("equal") |
| 159 | + plt.plot(0.0, 0.0, "*r") |
| 160 | + v1.plot() |
| 161 | + v2.plot() |
| 162 | + |
| 163 | + plt.plot(ox, oy, "ob") |
| 164 | + # plt.plot(x, y, "xr") |
| 165 | + # plot_circle(ex, ey, er, "-r") |
| 166 | + plt.pause(0.1) |
| 167 | + |
| 168 | + print("Done") |
| 169 | + |
| 170 | + |
| 171 | +if __name__ == '__main__': |
| 172 | + main() |
0 commit comments