|
| 1 | +############################################################################## Setup |
| 2 | +""" |
| 3 | +1D Bayesian Optimization Test: |
| 4 | +(1) Gemerate 1D objective. |
| 5 | +(2) Initialize with data. |
| 6 | +(3) Test predictions, variance estimation, and sampling. |
| 7 | +(4) Run single iteration of each acquisition function. |
| 8 | +""" |
| 9 | + |
| 10 | +# Imports |
| 11 | + |
| 12 | +import numpy as np |
| 13 | +import pandas as pd |
| 14 | +from edbo.bro import BO_express |
| 15 | +from edbo.pd_utils import to_torch, torch_to_numpy |
| 16 | +import matplotlib.pyplot as plt |
| 17 | +import random |
| 18 | + |
| 19 | +############################################################################## Test Functions |
| 20 | + |
| 21 | +# Objective |
| 22 | + |
| 23 | +def random_result(*kwargs): |
| 24 | + """Random objective.""" |
| 25 | + |
| 26 | + return round(random.random(),3) * 100 |
| 27 | + |
| 28 | +# Test a precomputed objective |
| 29 | + |
| 30 | +def BO_pred(acq_func, plot=False, return_='pred', append=False, init='rand'): |
| 31 | + |
| 32 | + # Define reaction space and auto-encode |
| 33 | + n_ligands = random.sample([3,4,5,6,7,8], 1)[0] |
| 34 | + ligands = pd.read_csv('ligands.csv').sample(n_ligands).values.flatten() |
| 35 | + bases = ['DBU', 'MTBD', 'potassium carbonate', 'potassium phosphate', 'potassium tert-butoxide'] |
| 36 | + reaction_components={'aryl_halide':['chlorobenzene','iodobenzene','bromobenzene'], |
| 37 | + 'base':bases, |
| 38 | + 'solvent':['THF', 'Toluene', 'DMSO', 'DMAc'], |
| 39 | + 'ligand':ligands, |
| 40 | + 'concentration':[0.1, 0.2, 0.3], |
| 41 | + 'temperature': [20, 30, 40] |
| 42 | + } |
| 43 | + encoding={ |
| 44 | + 'aryl_halide':'resolve', |
| 45 | + 'base':'resolve', |
| 46 | + 'solvent':'resolve', |
| 47 | + 'ligand':'mordred', |
| 48 | + 'concentration':'numeric', |
| 49 | + 'temperature':'numeric'} |
| 50 | + |
| 51 | + # Instatiate BO class |
| 52 | + bo = BO_express(reaction_components=reaction_components, |
| 53 | + encoding=encoding, |
| 54 | + acquisition_function=acq_func, |
| 55 | + init_method=init, |
| 56 | + batch_size=random.sample(range(30),1)[0], |
| 57 | + computational_objective=random_result, |
| 58 | + target='yield') |
| 59 | + |
| 60 | + bo.init_sample(append=True) |
| 61 | + bo.run(append=append) |
| 62 | + bo.save() |
| 63 | + bo = BO_express() |
| 64 | + bo.load() |
| 65 | + |
| 66 | + # Check prediction |
| 67 | + if return_ == 'pred': |
| 68 | + |
| 69 | + try: |
| 70 | + bo.model.predict(to_torch(bo.obj.domain)) # torch.tensor |
| 71 | + bo.model.predict(bo.obj.domain.values) # numpy.array |
| 72 | + bo.model.predict(list(bo.obj.domain.values)) # list |
| 73 | + bo.model.predict(bo.obj.domain) # pandas.DataFrame |
| 74 | + except: |
| 75 | + return False |
| 76 | + |
| 77 | + return True |
| 78 | + |
| 79 | + # Check predictive postrior variance |
| 80 | + elif return_ == 'var': |
| 81 | + |
| 82 | + try: |
| 83 | + bo.model.predict(to_torch(bo.obj.domain)) # torch.tensor |
| 84 | + bo.model.predict(bo.obj.domain.values) # numpy.array |
| 85 | + bo.model.predict(list(bo.obj.domain.values)) # list |
| 86 | + bo.model.predict(bo.obj.domain) # pandas.DataFrame |
| 87 | + except: |
| 88 | + return False |
| 89 | + |
| 90 | + return True |
| 91 | + |
| 92 | + # Make sure sampling works with tensors, arrays, lists, and DataFrames |
| 93 | + elif return_ == 'sample': |
| 94 | + try: |
| 95 | + bo.model.sample_posterior(to_torch(bo.obj.domain)) # torch.tensor |
| 96 | + bo.model.sample_posterior(bo.obj.domain.values) # numpy.array |
| 97 | + bo.model.sample_posterior(list(bo.obj.domain.values)) # list |
| 98 | + bo.model.sample_posterior(bo.obj.domain) # pandas.DataFrame |
| 99 | + return True |
| 100 | + except: |
| 101 | + return False |
| 102 | + |
| 103 | + # Plot model |
| 104 | + elif return_ == 'plot': |
| 105 | + mean = bo.obj.scaler.unstandardize(bo.model.predict(bo.obj.domain)) |
| 106 | + std = np.sqrt(bo.model.variance(bo.obj.domain)) * bo.obj.scaler.std * 2 |
| 107 | + samples = bo.obj.scaler.unstandardize(bo.model.sample_posterior(bo.obj.domain, batch_size=3)) |
| 108 | + |
| 109 | + plt.figure(1, figsize=(6,6)) |
| 110 | + |
| 111 | + # Model mean and standard deviation |
| 112 | + plt.subplot(211) |
| 113 | + plt.plot(range(len(mean)), mean, label='GP') |
| 114 | + plt.fill_between(range(len(mean)), mean-std, mean+std, alpha=0.4) |
| 115 | + # Known results and next selected point |
| 116 | + plt.scatter(bo.obj.results_input().index.values, bo.obj.results_input()['yield'], color='black', label='known') |
| 117 | + plt.ylabel('f(x)') |
| 118 | + # Samples |
| 119 | + plt.subplot(212) |
| 120 | + for sample in samples: |
| 121 | + plt.plot(range(len(mean)), torch_to_numpy(sample)) |
| 122 | + plt.xlabel('x') |
| 123 | + plt.ylabel('Posterior Samples') |
| 124 | + plt.show() |
| 125 | + |
| 126 | + return True |
| 127 | + |
| 128 | + elif return_ == 'simulate': |
| 129 | + |
| 130 | + if init != 'external': |
| 131 | + bo.init_seq.batch_size = random.sample([2,3,4,5,6,7,8,9,10],1)[0] |
| 132 | + |
| 133 | + bo.simulate(iterations=3) |
| 134 | + bo.plot_convergence() |
| 135 | + bo.model.regression() |
| 136 | + |
| 137 | + return True |
| 138 | + |
| 139 | + |
| 140 | +############################################################################## Tests |
| 141 | + |
| 142 | +# Test predicted mean and variance, sampling, and ploting |
| 143 | + |
| 144 | +def test_BO_pred_mean_TS(): |
| 145 | + assert BO_pred('TS', return_='pred') |
| 146 | + |
| 147 | +def test_BO_var(): |
| 148 | + assert BO_pred('TS', return_='var') |
| 149 | + |
| 150 | +def test_BO_sample(): |
| 151 | + assert BO_pred('TS', return_='sample') |
| 152 | + |
| 153 | +def test_BO_plot(): |
| 154 | + assert BO_pred('TS', return_='plot') |
| 155 | + |
| 156 | +# Test simulations |
| 157 | + |
| 158 | +def test_BO_simulate_TS(): |
| 159 | + assert BO_pred('TS', return_='simulate') |
| 160 | + |
| 161 | +def test_BO_simulate_EI(): |
| 162 | + assert BO_pred('EI', return_='simulate') |
| 163 | + |
| 164 | + |
| 165 | + |
| 166 | + |
0 commit comments