|
| 1 | +############################################################################## Setup |
| 2 | +""" |
| 3 | +Acquisition Functions Test Parameters: |
| 4 | +(0) Gaussian Process model. |
| 5 | +(1) 1D objective. |
| 6 | +(2) Initialize with random data. |
| 7 | +(3) Test predictions, variance estimation, and sampling. |
| 8 | +(4) Run single iteration of each acquisition function. |
| 9 | +(5) Test gpytroch fast computation features. |
| 10 | +""" |
| 11 | + |
| 12 | +# Imports |
| 13 | + |
| 14 | +import numpy as np |
| 15 | +import pandas as pd |
| 16 | +from gpytorch.priors import GammaPrior |
| 17 | +from edbo.bro import BO |
| 18 | +from edbo.pd_utils import to_torch |
| 19 | +import random |
| 20 | + |
| 21 | +############################################################################## Test Functions |
| 22 | + |
| 23 | +# Objective |
| 24 | + |
| 25 | +def f(x): |
| 26 | + """Noise free objective.""" |
| 27 | + |
| 28 | + return np.sin(10 * x) * x * 100 |
| 29 | + |
| 30 | +# Test a precomputed objective |
| 31 | + |
| 32 | +def BO_pred(acq_func, plot=False, return_='pred', append=False, init='external', fast_comp=True): |
| 33 | + |
| 34 | + # Experiment index |
| 35 | + X = np.linspace(0,1,1000) |
| 36 | + exindex = pd.DataFrame([[x, f(x)] for x in X], columns=['x', 'f(x)']) |
| 37 | + training_points = [50, 300, 500, 900] |
| 38 | + |
| 39 | + # Instatiate BO class |
| 40 | + bo = BO(exindex=exindex, |
| 41 | + domain=exindex.drop('f(x)', axis=1), |
| 42 | + results=exindex.iloc[training_points], |
| 43 | + acquisition_function=acq_func, |
| 44 | + init_method=init, |
| 45 | + lengthscale_prior=[GammaPrior(1.2,1.1), 0.2], |
| 46 | + noise_prior=None, |
| 47 | + batch_size=random.sample([1,2,3,4,5,6,7,8,9,10],1)[0], |
| 48 | + fast_comp=fast_comp) |
| 49 | + |
| 50 | + bo.run(append=append) |
| 51 | + |
| 52 | + # Check prediction |
| 53 | + if return_ == 'pred': |
| 54 | + |
| 55 | + try: |
| 56 | + bo.model.predict(to_torch(bo.obj.domain)) # torch.tensor |
| 57 | + bo.model.predict(bo.obj.domain.values) # numpy.array |
| 58 | + bo.model.predict(list(bo.obj.domain.values)) # list |
| 59 | + bo.model.predict(exindex.drop('f(x)', axis=1)) # pandas.DataFrame |
| 60 | + except: |
| 61 | + return False |
| 62 | + |
| 63 | + pred = bo.model.predict(bo.obj.domain.iloc[[32]]) |
| 64 | + pred = bo.obj.scaler.unstandardize(pred) |
| 65 | + return (pred[0] - 1.33) < 0.1 |
| 66 | + |
| 67 | + # Check predictive postrior variance |
| 68 | + elif return_ == 'var': |
| 69 | + |
| 70 | + try: |
| 71 | + bo.model.predict(to_torch(bo.obj.domain)) # torch.tensor |
| 72 | + bo.model.predict(bo.obj.domain.values) # numpy.array |
| 73 | + bo.model.predict(list(bo.obj.domain.values)) # list |
| 74 | + bo.model.predict(exindex.drop('f(x)', axis=1)) # pandas.DataFrame |
| 75 | + except: |
| 76 | + return False |
| 77 | + |
| 78 | + var = bo.model.variance(bo.obj.domain.iloc[[32]]) |
| 79 | + return (var[0] - 0.04) < 0.1 |
| 80 | + |
| 81 | + # Make sure sampling works with tensors, arrays, lists, and DataFrames |
| 82 | + elif return_ == 'sample': |
| 83 | + try: |
| 84 | + bo.model.sample_posterior(to_torch(bo.obj.domain)) # torch.tensor |
| 85 | + bo.model.sample_posterior(bo.obj.domain.values) # numpy.array |
| 86 | + bo.model.sample_posterior(list(bo.obj.domain.values)) # list |
| 87 | + bo.model.sample_posterior(exindex.drop('f(x)', axis=1)) # pandas.DataFrame |
| 88 | + return True |
| 89 | + except: |
| 90 | + return False |
| 91 | + |
| 92 | + elif return_ == 'simulate': |
| 93 | + |
| 94 | + if init != 'external': |
| 95 | + bo.init_seq.batch_size = random.sample([2,3,4,5,6,7,8,9,10],1)[0] |
| 96 | + |
| 97 | + bo.simulate(iterations=5) |
| 98 | + bo.plot_convergence() |
| 99 | + bo.model.regression() |
| 100 | + |
| 101 | + return True |
| 102 | + |
| 103 | + elif return_ == 'none': |
| 104 | + return True |
| 105 | + |
| 106 | +############################################################################## Tests |
| 107 | + |
| 108 | +# Test predicted mean, variance, and sampling |
| 109 | + |
| 110 | +def test_BO_pred_mean(): |
| 111 | + assert BO_pred('TS', return_='pred') |
| 112 | + |
| 113 | +def test_BO_pred_var(): |
| 114 | + assert BO_pred('TS', return_='var') |
| 115 | + |
| 116 | +def test_BO_sample(): |
| 117 | + assert BO_pred('TS', return_='sample') |
| 118 | + |
| 119 | +# Test different acquisition functions |
| 120 | + |
| 121 | +def test_BO_EI(): |
| 122 | + assert BO_pred('EI', return_='none') |
| 123 | + |
| 124 | +def test_BO_PI(): |
| 125 | + assert BO_pred('PI', return_='none') |
| 126 | + |
| 127 | +def test_BO_UCB(): |
| 128 | + assert BO_pred('UCB', return_='none') |
| 129 | + |
| 130 | +def test_BO_rand(): |
| 131 | + assert BO_pred('rand', return_='none') |
| 132 | + |
| 133 | +def test_BO_MeanMax(): |
| 134 | + assert BO_pred('MeanMax', return_='none') |
| 135 | + |
| 136 | +def test_BO_VarMax(): |
| 137 | + assert BO_pred('VarMax', return_='none') |
| 138 | + |
| 139 | +def test_BO_EI_TS(): |
| 140 | + assert BO_pred('EI-TS', return_='none') |
| 141 | + |
| 142 | +def test_BO_PI_TS(): |
| 143 | + assert BO_pred('PI-TS', return_='none') |
| 144 | + |
| 145 | +def test_BO_UCB_TS(): |
| 146 | + assert BO_pred('UCB-TS', return_='none') |
| 147 | + |
| 148 | +def test_BO_rand_TS(): |
| 149 | + assert BO_pred('rand-TS', return_='none') |
| 150 | + |
| 151 | +def test_BO_MeanMax_TS(): |
| 152 | + assert BO_pred('MeanMax-TS', return_='none') |
| 153 | + |
| 154 | +def test_BO_VarMax_TS(): |
| 155 | + assert BO_pred('VarMax-TS', return_='none') |
| 156 | + |
| 157 | +def test_BO_eps_greedy(): |
| 158 | + assert BO_pred('eps-greedy', return_='none') |
| 159 | + |
| 160 | +# Turn fast computation off |
| 161 | + |
| 162 | +def test_fast_comp_off(): |
| 163 | + assert BO_pred('TS', fast_comp=False) |
0 commit comments