|
| 1 | +import os |
| 2 | +import cv2 |
| 3 | +import mediapipe as mp |
| 4 | +import numpy as np |
| 5 | +import logging |
| 6 | +from glob import glob |
| 7 | +from typing import List, Dict |
| 8 | +from concurrent.futures import ProcessPoolExecutor |
| 9 | +import pandas as pd |
| 10 | + |
| 11 | +import conf as c # Keeping original conf import name |
| 12 | + |
| 13 | +logging.basicConfig(level=logging.DEBUG) |
| 14 | +logger = logging.getLogger(__name__) |
| 15 | + |
| 16 | +mp_holistic = mp.solutions.holistic |
| 17 | + |
| 18 | + |
| 19 | +def read_timestamp_data(csv_file: str) -> Dict[str, List[float]]: |
| 20 | + """ |
| 21 | + Reads and processes timestamp data from a CSV file. |
| 22 | +
|
| 23 | + Args: |
| 24 | + csv_file (str): Path to the CSV file containing timestamp information |
| 25 | +
|
| 26 | + Returns: |
| 27 | + Dict[str, List[float]]: Dictionary mapping segment names to [start, end] timestamps |
| 28 | + """ |
| 29 | + try: |
| 30 | + df = pd.read_csv(csv_file, delimiter=",", on_bad_lines="skip")[ |
| 31 | + ["SENTENCE_NAME", "START", "END"] |
| 32 | + ].dropna() |
| 33 | + return ( |
| 34 | + df.set_index("SENTENCE_NAME")[["START", "END"]] |
| 35 | + .apply(lambda row: [row["START"], row["END"]], axis=1) |
| 36 | + .to_dict() |
| 37 | + ) |
| 38 | + except Exception as e: |
| 39 | + logger.error(f"Error loading CSV file {csv_file}: {e}") |
| 40 | + return {} |
| 41 | + |
| 42 | + |
| 43 | +def get_video_filenames(directory: str, pattern="*.mp4") -> List[str]: |
| 44 | + """ |
| 45 | + Retrieves video filenames from specified directory without extensions. |
| 46 | +
|
| 47 | + Args: |
| 48 | + directory (str): Directory path to search for video files |
| 49 | + pattern (str): File pattern to match (default: "*.mp4") |
| 50 | +
|
| 51 | + Returns: |
| 52 | + List[str]: List of filenames without extensions |
| 53 | + """ |
| 54 | + return [ |
| 55 | + os.path.splitext(os.path.basename(f))[0] |
| 56 | + for f in glob(os.path.join(directory, pattern)) |
| 57 | + ] |
| 58 | + |
| 59 | + |
| 60 | +def process_mediapipe_detection(image, model): |
| 61 | + """ |
| 62 | + Processes an image through MediaPipe detection model. |
| 63 | +
|
| 64 | + Args: |
| 65 | + image: Input image in BGR format |
| 66 | + model: MediaPipe model instance |
| 67 | +
|
| 68 | + Returns: |
| 69 | + MediaPipe detection results |
| 70 | + """ |
| 71 | + return model.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) |
| 72 | + |
| 73 | + |
| 74 | +def extract_landmark_coordinates(results): |
| 75 | + """ |
| 76 | + Extracts landmark coordinates from MediaPipe detection results. |
| 77 | +
|
| 78 | + Args: |
| 79 | + results: MediaPipe detection results |
| 80 | +
|
| 81 | + Returns: |
| 82 | + np.ndarray: Concatenated array of pose, face, and hand landmarks |
| 83 | + """ |
| 84 | + |
| 85 | + def convert_landmarks_to_array(landmarks, indices): |
| 86 | + return ( |
| 87 | + np.array( |
| 88 | + [[landmarks[i].x, landmarks[i].y, landmarks[i].z] for i in indices] |
| 89 | + ) |
| 90 | + if landmarks |
| 91 | + else np.zeros((len(indices), 3)) |
| 92 | + ) |
| 93 | + |
| 94 | + # Extract landmarks for different body parts |
| 95 | + pose_landmarks = convert_landmarks_to_array( |
| 96 | + getattr(results.pose_landmarks, "landmark", None), c.POSE_IDX |
| 97 | + ) |
| 98 | + left_hand = convert_landmarks_to_array( |
| 99 | + getattr(results.left_hand_landmarks, "landmark", None), c.HAND_IDX |
| 100 | + ) |
| 101 | + right_hand = convert_landmarks_to_array( |
| 102 | + getattr(results.right_hand_landmarks, "landmark", None), c.HAND_IDX |
| 103 | + ) |
| 104 | + face_landmarks = convert_landmarks_to_array( |
| 105 | + getattr(results.face_landmarks, "landmark", None), c.FACE_IDX |
| 106 | + ) |
| 107 | + |
| 108 | + return np.concatenate( |
| 109 | + [ |
| 110 | + pose_landmarks.flatten(), |
| 111 | + face_landmarks.flatten(), |
| 112 | + left_hand.flatten(), |
| 113 | + right_hand.flatten(), |
| 114 | + ] |
| 115 | + ) |
| 116 | + |
| 117 | + |
| 118 | +def process_complete_video(video_path: str, output_file: str): |
| 119 | + """ |
| 120 | + Processes an entire video to extract holistic keypoints and saves them. |
| 121 | +
|
| 122 | + Args: |
| 123 | + video_path (str): Path to input video file |
| 124 | + output_file (str): Path to save extracted landmarks |
| 125 | + """ |
| 126 | + cap = cv2.VideoCapture(video_path) |
| 127 | + if not cap.isOpened(): |
| 128 | + logger.error(f"Error opening video: {video_path}") |
| 129 | + return |
| 130 | + |
| 131 | + # Get video properties and determine frame skip rate |
| 132 | + fps = cap.get(cv2.CAP_PROP_FPS) |
| 133 | + total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
| 134 | + |
| 135 | + # Calculate frame skip based on configuration |
| 136 | + if c.LENGTH_BASED_MAX_FRAME and c.LENGTH_BASED_FRAME_SKIP: |
| 137 | + logger.error("Both LENGTH_BASED_MAX_FRAME and LENGTH_BASED_CONST are True.") |
| 138 | + return |
| 139 | + |
| 140 | + frame_skip = ( |
| 141 | + np.ceil(total_frames / c.MAX_FRAME) |
| 142 | + if c.LENGTH_BASED_MAX_FRAME |
| 143 | + else c.FRAME_SKIP if c.LENGTH_BASED_FRAME_SKIP else 1 |
| 144 | + ) |
| 145 | + |
| 146 | + landmark_sequences = [] |
| 147 | + with mp_holistic.Holistic( |
| 148 | + model_complexity=1, |
| 149 | + refine_face_landmarks=True, |
| 150 | + min_detection_confidence=0.5, |
| 151 | + min_tracking_confidence=0.5, |
| 152 | + ) as holistic: |
| 153 | + current_frame = 0 |
| 154 | + while current_frame < total_frames: |
| 155 | + ret, frame = cap.read() |
| 156 | + if not ret: |
| 157 | + break |
| 158 | + if current_frame % frame_skip == 0: |
| 159 | + results = process_mediapipe_detection(frame, holistic) |
| 160 | + landmark_sequences.append(extract_landmark_coordinates(results)) |
| 161 | + current_frame += 1 |
| 162 | + |
| 163 | + cap.release() |
| 164 | + |
| 165 | + # Save landmarks if valid data exists |
| 166 | + landmark_array = np.array(landmark_sequences) |
| 167 | + if landmark_array.size > 0 and np.any(landmark_array): |
| 168 | + os.makedirs(os.path.dirname(output_file), exist_ok=True) |
| 169 | + np.save(output_file, landmark_array) |
| 170 | + logger.info(f"Saved landmarks to {output_file}") |
| 171 | + else: |
| 172 | + logger.info(f"No valid landmarks for video {video_path}, not saving.") |
| 173 | + |
| 174 | + |
| 175 | +def main(): |
| 176 | + """ |
| 177 | + Main function to orchestrate video processing and landmark extraction. |
| 178 | + Handles file management and parallel processing of complete videos. |
| 179 | + """ |
| 180 | + video_files = get_video_filenames(c.H2S_VIDEO_DIR) |
| 181 | + processed_files = get_video_filenames(c.H2S_OUTPUT_DIR, pattern="*.npy") |
| 182 | + |
| 183 | + processing_tasks = [] |
| 184 | + for video_name in video_files: |
| 185 | + video_path = os.path.join(c.H2S_VIDEO_DIR, f"{video_name}.mp4") |
| 186 | + output_path = os.path.join(c.H2S_OUTPUT_DIR, f"{video_name}.npy") |
| 187 | + if video_name not in processed_files: |
| 188 | + processing_tasks.append((video_path, output_path)) |
| 189 | + else: |
| 190 | + logger.info(f"Skipping existing file: {output_path}") |
| 191 | + |
| 192 | + # Process videos in parallel |
| 193 | + with ProcessPoolExecutor(max_workers=c.MAX_WORKERS) as executor: |
| 194 | + for video_path, output_path in processing_tasks: |
| 195 | + executor.submit(process_complete_video, video_path, output_path) |
| 196 | + |
| 197 | + |
| 198 | +if __name__ == "__main__": |
| 199 | + main() |
0 commit comments