@@ -174,7 +174,7 @@ def test_kneighbors_classifier(n_samples=40,
174174 """Test k-neighbors classification"""
175175 rng = np .random .RandomState (random_state )
176176 X = 2 * rng .rand (n_samples , n_features ) - 1
177- y = ((X ** 2 ).sum (axis = 1 ) < .25 ).astype (np .int )
177+ y = ((X ** 2 ).sum (axis = 1 ) < .5 ).astype (np .int )
178178
179179 weight_func = _weight_func
180180
@@ -218,7 +218,7 @@ def test_radius_neighbors_classifier(n_samples=40,
218218 """Test radius-based classification"""
219219 rng = np .random .RandomState (random_state )
220220 X = 2 * rng .rand (n_samples , n_features ) - 1
221- y = ((X ** 2 ).sum (axis = 1 ) < .25 ).astype (np .int )
221+ y = ((X ** 2 ).sum (axis = 1 ) < .5 ).astype (np .int )
222222
223223 weight_func = _weight_func
224224
@@ -312,7 +312,7 @@ def test_kneighbors_classifier_sparse(n_samples=40,
312312 # Like the above, but with various types of sparse matrices
313313 rng = np .random .RandomState (random_state )
314314 X = 2 * rng .rand (n_samples , n_features ) - 1
315- y = ((X ** 2 ).sum (axis = 1 ) < .25 ).astype (np .int )
315+ y = ((X ** 2 ).sum (axis = 1 ) < .5 ).astype (np .int )
316316
317317 SPARSE_TYPES = (bsr_matrix , coo_matrix , csc_matrix , csr_matrix ,
318318 dok_matrix , lil_matrix )
0 commit comments