You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/en/faq.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -53,7 +53,7 @@ Briefly, it is a deep supervision trick to improve the accuracy. In the training
53
53
54
54
## Why is the log file not created
55
55
56
-
In the train script, we call `get_root_logger`at Line 167, and `get_root_logger` in mmseg calls `get_logger` in mmcv, mmcv will return the same logger which has beed initialized in 'mmsegmentation/tools/train.py' with the parameter `log_file`. There is only one logger (initialized with `log_file`) during training.
56
+
In the train script, we call `get_root_logger`at Line 167, and `get_root_logger` in mmseg calls `get_logger` in mmcv, mmcv will return the same logger which has been initialized in 'mmsegmentation/tools/train.py' with the parameter `log_file`. There is only one logger (initialized with `log_file`) during training.
Copy file name to clipboardExpand all lines: docs/en/tutorials/customize_datasets.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -33,7 +33,7 @@ data = dict(
33
33
-`train`, `val` and `test`: The [`config`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/config.md)s to build dataset instances for model training, validation and testing by
34
34
using [`build and registry`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/registry.md) mechanism.
35
35
36
-
-`samples_per_gpu`: How many samples per batch and per gpu to load during model training, and the `batch_size` of training is equal to `samples_per_gpu` times gpu number, e.g. when using 8 gpus for distributed data parallel trainig and `samples_per_gpu=4`, the `batch_size` is `8*4=32`.
36
+
-`samples_per_gpu`: How many samples per batch and per gpu to load during model training, and the `batch_size` of training is equal to `samples_per_gpu` times gpu number, e.g. when using 8 gpus for distributed data parallel training and `samples_per_gpu=4`, the `batch_size` is `8*4=32`.
37
37
If you would like to define `batch_size` for testing and validation, please use `test_dataloaser` and
0 commit comments