|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "### CRF" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "基于sklearn_crfsuite NER系统搭建,本例来自于sklearn_crfsuite官方tutorial" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 3, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "# 导入相关库\n", |
| 24 | + "import nltk\n", |
| 25 | + "import sklearn\n", |
| 26 | + "import scipy.stats\n", |
| 27 | + "from sklearn.metrics import make_scorer\n", |
| 28 | + "from sklearn.model_selection import cross_val_score\n", |
| 29 | + "from sklearn.model_selection import RandomizedSearchCV\n", |
| 30 | + "\n", |
| 31 | + "import sklearn_crfsuite\n", |
| 32 | + "from sklearn_crfsuite import scorers\n", |
| 33 | + "from sklearn_crfsuite import metrics" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": 5, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [ |
| 41 | + { |
| 42 | + "name": "stderr", |
| 43 | + "output_type": "stream", |
| 44 | + "text": [ |
| 45 | + "[nltk_data] Downloading package conll2002 to\n", |
| 46 | + "[nltk_data] C:\\Users\\92070\\AppData\\Roaming\\nltk_data...\n", |
| 47 | + "[nltk_data] Unzipping corpora\\conll2002.zip.\n" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "data": { |
| 52 | + "text/plain": [ |
| 53 | + "True" |
| 54 | + ] |
| 55 | + }, |
| 56 | + "execution_count": 5, |
| 57 | + "metadata": {}, |
| 58 | + "output_type": "execute_result" |
| 59 | + } |
| 60 | + ], |
| 61 | + "source": [ |
| 62 | + "# 基于NLTK下载示例数据集\n", |
| 63 | + "nltk.download('conll2002')" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": 6, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "# 设置训练和测试样本\n", |
| 73 | + "train_sents = list(nltk.corpus.conll2002.iob_sents('esp.train'))\n", |
| 74 | + "test_sents = list(nltk.corpus.conll2002.iob_sents('esp.testb'))" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": 7, |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [ |
| 82 | + { |
| 83 | + "data": { |
| 84 | + "text/plain": [ |
| 85 | + "[('Melbourne', 'NP', 'B-LOC'),\n", |
| 86 | + " ('(', 'Fpa', 'O'),\n", |
| 87 | + " ('Australia', 'NP', 'B-LOC'),\n", |
| 88 | + " (')', 'Fpt', 'O'),\n", |
| 89 | + " (',', 'Fc', 'O'),\n", |
| 90 | + " ('25', 'Z', 'O'),\n", |
| 91 | + " ('may', 'NC', 'O'),\n", |
| 92 | + " ('(', 'Fpa', 'O'),\n", |
| 93 | + " ('EFE', 'NC', 'B-ORG'),\n", |
| 94 | + " (')', 'Fpt', 'O'),\n", |
| 95 | + " ('.', 'Fp', 'O')]" |
| 96 | + ] |
| 97 | + }, |
| 98 | + "execution_count": 7, |
| 99 | + "metadata": {}, |
| 100 | + "output_type": "execute_result" |
| 101 | + } |
| 102 | + ], |
| 103 | + "source": [ |
| 104 | + "train_sents[0]" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 8, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "# 单词转化为数值特征\n", |
| 114 | + "def word2features(sent, i):\n", |
| 115 | + " word = sent[i][0]\n", |
| 116 | + " postag = sent[i][1]\n", |
| 117 | + "\n", |
| 118 | + " features = {\n", |
| 119 | + " 'bias': 1.0,\n", |
| 120 | + " 'word.lower()': word.lower(),\n", |
| 121 | + " 'word[-3:]': word[-3:],\n", |
| 122 | + " 'word[-2:]': word[-2:],\n", |
| 123 | + " 'word.isupper()': word.isupper(),\n", |
| 124 | + " 'word.istitle()': word.istitle(),\n", |
| 125 | + " 'word.isdigit()': word.isdigit(),\n", |
| 126 | + " 'postag': postag,\n", |
| 127 | + " 'postag[:2]': postag[:2],\n", |
| 128 | + " }\n", |
| 129 | + " if i > 0:\n", |
| 130 | + " word1 = sent[i-1][0]\n", |
| 131 | + " postag1 = sent[i-1][1]\n", |
| 132 | + " features.update({\n", |
| 133 | + " '-1:word.lower()': word1.lower(),\n", |
| 134 | + " '-1:word.istitle()': word1.istitle(),\n", |
| 135 | + " '-1:word.isupper()': word1.isupper(),\n", |
| 136 | + " '-1:postag': postag1,\n", |
| 137 | + " '-1:postag[:2]': postag1[:2],\n", |
| 138 | + " })\n", |
| 139 | + " else:\n", |
| 140 | + " features['BOS'] = True\n", |
| 141 | + "\n", |
| 142 | + " if i < len(sent)-1:\n", |
| 143 | + " word1 = sent[i+1][0]\n", |
| 144 | + " postag1 = sent[i+1][1]\n", |
| 145 | + " features.update({\n", |
| 146 | + " '+1:word.lower()': word1.lower(),\n", |
| 147 | + " '+1:word.istitle()': word1.istitle(),\n", |
| 148 | + " '+1:word.isupper()': word1.isupper(),\n", |
| 149 | + " '+1:postag': postag1,\n", |
| 150 | + " '+1:postag[:2]': postag1[:2],\n", |
| 151 | + " })\n", |
| 152 | + " else:\n", |
| 153 | + " features['EOS'] = True\n", |
| 154 | + "\n", |
| 155 | + " return features\n", |
| 156 | + "\n", |
| 157 | + "\n", |
| 158 | + "def sent2features(sent):\n", |
| 159 | + " return [word2features(sent, i) for i in range(len(sent))]\n", |
| 160 | + "\n", |
| 161 | + "def sent2labels(sent):\n", |
| 162 | + " return [label for token, postag, label in sent]\n", |
| 163 | + "\n", |
| 164 | + "def sent2tokens(sent):\n", |
| 165 | + " return [token for token, postag, label in sent]" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": 9, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [ |
| 173 | + { |
| 174 | + "data": { |
| 175 | + "text/plain": [ |
| 176 | + "{'bias': 1.0,\n", |
| 177 | + " 'word.lower()': 'melbourne',\n", |
| 178 | + " 'word[-3:]': 'rne',\n", |
| 179 | + " 'word[-2:]': 'ne',\n", |
| 180 | + " 'word.isupper()': False,\n", |
| 181 | + " 'word.istitle()': True,\n", |
| 182 | + " 'word.isdigit()': False,\n", |
| 183 | + " 'postag': 'NP',\n", |
| 184 | + " 'postag[:2]': 'NP',\n", |
| 185 | + " 'BOS': True,\n", |
| 186 | + " '+1:word.lower()': '(',\n", |
| 187 | + " '+1:word.istitle()': False,\n", |
| 188 | + " '+1:word.isupper()': False,\n", |
| 189 | + " '+1:postag': 'Fpa',\n", |
| 190 | + " '+1:postag[:2]': 'Fp'}" |
| 191 | + ] |
| 192 | + }, |
| 193 | + "execution_count": 9, |
| 194 | + "metadata": {}, |
| 195 | + "output_type": "execute_result" |
| 196 | + } |
| 197 | + ], |
| 198 | + "source": [ |
| 199 | + "sent2features(train_sents[0])[0]" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": 10, |
| 205 | + "metadata": {}, |
| 206 | + "outputs": [], |
| 207 | + "source": [ |
| 208 | + "# 构造训练集和测试集\n", |
| 209 | + "X_train = [sent2features(s) for s in train_sents]\n", |
| 210 | + "y_train = [sent2labels(s) for s in train_sents]\n", |
| 211 | + "\n", |
| 212 | + "X_test = [sent2features(s) for s in test_sents]\n", |
| 213 | + "y_test = [sent2labels(s) for s in test_sents]" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": 11, |
| 219 | + "metadata": {}, |
| 220 | + "outputs": [ |
| 221 | + { |
| 222 | + "name": "stdout", |
| 223 | + "output_type": "stream", |
| 224 | + "text": [ |
| 225 | + "8323 1517\n" |
| 226 | + ] |
| 227 | + } |
| 228 | + ], |
| 229 | + "source": [ |
| 230 | + "print(len(X_train), len(X_test))" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": 18, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [ |
| 238 | + { |
| 239 | + "data": { |
| 240 | + "text/plain": [ |
| 241 | + "0.7964686316443963" |
| 242 | + ] |
| 243 | + }, |
| 244 | + "execution_count": 18, |
| 245 | + "metadata": {}, |
| 246 | + "output_type": "execute_result" |
| 247 | + } |
| 248 | + ], |
| 249 | + "source": [ |
| 250 | + "# 创建CRF模型实例\n", |
| 251 | + "crf = sklearn_crfsuite.CRF(\n", |
| 252 | + " algorithm='lbfgs',\n", |
| 253 | + " c1=0.1,\n", |
| 254 | + " c2=0.1,\n", |
| 255 | + " max_iterations=100,\n", |
| 256 | + " all_possible_transitions=True\n", |
| 257 | + ")\n", |
| 258 | + "# 模型训练\n", |
| 259 | + "crf.fit(X_train, y_train)\n", |
| 260 | + "# 类别标签\n", |
| 261 | + "labels = list(crf.classes_)\n", |
| 262 | + "labels.remove('O')\n", |
| 263 | + "# 模型预测\n", |
| 264 | + "y_pred = crf.predict(X_test)\n", |
| 265 | + "# 计算F1得分\n", |
| 266 | + "metrics.flat_f1_score(y_test, y_pred,\n", |
| 267 | + " average='weighted', labels=labels)" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": 19, |
| 273 | + "metadata": {}, |
| 274 | + "outputs": [ |
| 275 | + { |
| 276 | + "name": "stdout", |
| 277 | + "output_type": "stream", |
| 278 | + "text": [ |
| 279 | + " precision recall f1-score support\n", |
| 280 | + "\n", |
| 281 | + " B-LOC 0.810 0.784 0.797 1084\n", |
| 282 | + " I-LOC 0.690 0.637 0.662 325\n", |
| 283 | + " B-MISC 0.731 0.569 0.640 339\n", |
| 284 | + " I-MISC 0.699 0.589 0.639 557\n", |
| 285 | + " B-ORG 0.807 0.832 0.820 1400\n", |
| 286 | + " I-ORG 0.852 0.786 0.818 1104\n", |
| 287 | + " B-PER 0.850 0.884 0.867 735\n", |
| 288 | + " I-PER 0.893 0.943 0.917 634\n", |
| 289 | + "\n", |
| 290 | + " micro avg 0.813 0.787 0.799 6178\n", |
| 291 | + " macro avg 0.791 0.753 0.770 6178\n", |
| 292 | + "weighted avg 0.809 0.787 0.796 6178\n", |
| 293 | + "\n" |
| 294 | + ] |
| 295 | + } |
| 296 | + ], |
| 297 | + "source": [ |
| 298 | + "# 打印B和I组的模型结果\n", |
| 299 | + "sorted_labels = sorted(\n", |
| 300 | + " labels,\n", |
| 301 | + " key=lambda name: (name[1:], name[0])\n", |
| 302 | + ")\n", |
| 303 | + "print(metrics.flat_classification_report(\n", |
| 304 | + " y_test, y_pred, labels=sorted_labels, digits=3\n", |
| 305 | + "))" |
| 306 | + ] |
| 307 | + }, |
| 308 | + { |
| 309 | + "cell_type": "code", |
| 310 | + "execution_count": null, |
| 311 | + "metadata": {}, |
| 312 | + "outputs": [], |
| 313 | + "source": [] |
| 314 | + } |
| 315 | + ], |
| 316 | + "metadata": { |
| 317 | + "kernelspec": { |
| 318 | + "display_name": "Python 3", |
| 319 | + "language": "python", |
| 320 | + "name": "python3" |
| 321 | + }, |
| 322 | + "language_info": { |
| 323 | + "codemirror_mode": { |
| 324 | + "name": "ipython", |
| 325 | + "version": 3 |
| 326 | + }, |
| 327 | + "file_extension": ".py", |
| 328 | + "mimetype": "text/x-python", |
| 329 | + "name": "python", |
| 330 | + "nbconvert_exporter": "python", |
| 331 | + "pygments_lexer": "ipython3", |
| 332 | + "version": "3.7.3" |
| 333 | + }, |
| 334 | + "toc": { |
| 335 | + "base_numbering": 1, |
| 336 | + "nav_menu": {}, |
| 337 | + "number_sections": true, |
| 338 | + "sideBar": true, |
| 339 | + "skip_h1_title": false, |
| 340 | + "title_cell": "Table of Contents", |
| 341 | + "title_sidebar": "Contents", |
| 342 | + "toc_cell": false, |
| 343 | + "toc_position": {}, |
| 344 | + "toc_section_display": true, |
| 345 | + "toc_window_display": false |
| 346 | + } |
| 347 | + }, |
| 348 | + "nbformat": 4, |
| 349 | + "nbformat_minor": 2 |
| 350 | +} |
0 commit comments