@@ -43,34 +43,34 @@ def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True,
4343 y : ndarray, shape (n_samples,)
4444 Target values
4545
46- Xy : array-like, optional
46+ Xy : array-like, default=None
4747 Xy = np.dot(X.T, y) that can be precomputed.
4848
49- l1_ratio : float
49+ l1_ratio : float, default=1.0
5050 The elastic net mixing parameter, with ``0 < l1_ratio <= 1``.
5151 For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not
5252 supported) ``For l1_ratio = 1`` it is an L1 penalty. For
5353 ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2.
5454
55- eps : float, optional
55+ eps : float, default=1e-3
5656 Length of the path. ``eps=1e-3`` means that
5757 ``alpha_min / alpha_max = 1e-3``
5858
59- n_alphas : int, optional
59+ n_alphas : int, default=100
6060 Number of alphas along the regularization path
6161
62- fit_intercept : boolean, default True
62+ fit_intercept : boolean, default= True
6363 Whether to fit an intercept or not
6464
65- normalize : boolean, optional, default False
65+ normalize : boolean, default= False
6666 This parameter is ignored when ``fit_intercept`` is set to False.
6767 If True, the regressors X will be normalized before regression by
6868 subtracting the mean and dividing by the l2-norm.
6969 If you wish to standardize, please use
7070 :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
7171 on an estimator with ``normalize=False``.
7272
73- copy_X : boolean, optional, default True
73+ copy_X : boolean, optional, default= True
7474 If ``True``, X will be copied; else, it may be overwritten.
7575 """
7676 if l1_ratio == 0 :
0 commit comments