|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy\n", |
| 10 | + "from cvxopt import matrix\n", |
| 11 | + "from cvxopt import solvers" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 2, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "# 定义二次规划参数\n", |
| 21 | + "P = matrix([[1.0,0.0],[0.0,0.0]])\n", |
| 22 | + "q = matrix([3.0,4.0])\n", |
| 23 | + "G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])\n", |
| 24 | + "h = matrix([0.0,0.0,-15.0,100.0,80.0])" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 3, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [ |
| 32 | + { |
| 33 | + "name": "stdout", |
| 34 | + "output_type": "stream", |
| 35 | + "text": [ |
| 36 | + " pcost dcost gap pres dres\n", |
| 37 | + " 0: 1.0780e+02 -7.6366e+02 9e+02 4e-17 4e+01\n", |
| 38 | + " 1: 9.3245e+01 9.7637e+00 8e+01 8e-17 3e+00\n", |
| 39 | + " 2: 6.7311e+01 3.2553e+01 3e+01 8e-17 1e+00\n", |
| 40 | + " 3: 2.6071e+01 1.5068e+01 1e+01 7e-17 7e-01\n", |
| 41 | + " 4: 3.7092e+01 2.3152e+01 1e+01 1e-16 4e-01\n", |
| 42 | + " 5: 2.5352e+01 1.8652e+01 7e+00 9e-17 4e-16\n", |
| 43 | + " 6: 2.0062e+01 1.9974e+01 9e-02 7e-17 2e-16\n", |
| 44 | + " 7: 2.0001e+01 2.0000e+01 9e-04 8e-17 2e-16\n", |
| 45 | + " 8: 2.0000e+01 2.0000e+01 9e-06 1e-16 2e-16\n", |
| 46 | + "Optimal solution found.\n" |
| 47 | + ] |
| 48 | + } |
| 49 | + ], |
| 50 | + "source": [ |
| 51 | + "# 构建求解\n", |
| 52 | + "sol = solvers.qp(P,q,G,h)" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "code", |
| 57 | + "execution_count": 8, |
| 58 | + "metadata": {}, |
| 59 | + "outputs": [ |
| 60 | + { |
| 61 | + "name": "stdout", |
| 62 | + "output_type": "stream", |
| 63 | + "text": [ |
| 64 | + "[ 7.13e-07]\n", |
| 65 | + "[ 5.00e+00]\n", |
| 66 | + " 20.00000617311241\n" |
| 67 | + ] |
| 68 | + } |
| 69 | + ], |
| 70 | + "source": [ |
| 71 | + "# 获取最优值\n", |
| 72 | + "print(sol['x'],sol['primal objective'])" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": 9, |
| 78 | + "metadata": {}, |
| 79 | + "outputs": [], |
| 80 | + "source": [ |
| 81 | + "import numpy as np\n", |
| 82 | + "from numpy import linalg\n", |
| 83 | + "import cvxopt\n", |
| 84 | + "import cvxopt.solvers\n", |
| 85 | + "import pylab as pl" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": 10, |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "# 定义一个线性核\n", |
| 95 | + "def linear_kernel(x1, x2):\n", |
| 96 | + " return np.dot(x1, x2)" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 11, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "def gen_non_lin_separable_data():\n", |
| 106 | + " mean1 = [-1, 2]\n", |
| 107 | + " mean2 = [1, -1]\n", |
| 108 | + " mean3 = [4, -4]\n", |
| 109 | + " mean4 = [-4, 4]\n", |
| 110 | + " cov = [[1.0, 0.8], [0.8, 1.0]]\n", |
| 111 | + " X1 = np.random.multivariate_normal(mean1, cov, 50)\n", |
| 112 | + " X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))\n", |
| 113 | + " y1 = np.ones(len(X1))\n", |
| 114 | + " X2 = np.random.multivariate_normal(mean2, cov, 50)\n", |
| 115 | + " X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))\n", |
| 116 | + " y2 = np.ones(len(X2)) * -1\n", |
| 117 | + " return X1, y1, X2, y2\n", |
| 118 | + "\n", |
| 119 | + "X1, y1, X2, y2 = gen_non_lin_separable_data()" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": 12, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [ |
| 127 | + { |
| 128 | + "name": "stdout", |
| 129 | + "output_type": "stream", |
| 130 | + "text": [ |
| 131 | + "(180, 2) (180,) (20, 2) (20,)\n" |
| 132 | + ] |
| 133 | + } |
| 134 | + ], |
| 135 | + "source": [ |
| 136 | + "def split_train(X1, y1, X2, y2):\n", |
| 137 | + " X1_train = X1[:90]\n", |
| 138 | + " y1_train = y1[:90]\n", |
| 139 | + " X2_train = X2[:90]\n", |
| 140 | + " y2_train = y2[:90]\n", |
| 141 | + " X_train = np.vstack((X1_train, X2_train))\n", |
| 142 | + " y_train = np.hstack((y1_train, y2_train))\n", |
| 143 | + " return X_train, y_train\n", |
| 144 | + "\n", |
| 145 | + "\n", |
| 146 | + "def split_test(X1, y1, X2, y2):\n", |
| 147 | + " X1_test = X1[90:]\n", |
| 148 | + " y1_test = y1[90:]\n", |
| 149 | + " X2_test = X2[90:]\n", |
| 150 | + " y2_test = y2[90:]\n", |
| 151 | + " X_test = np.vstack((X1_test, X2_test))\n", |
| 152 | + " y_test = np.hstack((y1_test, y2_test))\n", |
| 153 | + " return X_test, y_test\n", |
| 154 | + "\n", |
| 155 | + "X_train, y_train = split_train(X1, y1, X2, y2)\n", |
| 156 | + "X_test, y_test = split_test(X1, y1, X2, y2)\n", |
| 157 | + "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": 27, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "def fit(X, y, C):\n", |
| 167 | + " n_samples, n_features = X.shape\n", |
| 168 | + "\n", |
| 169 | + " # Gram matrix\n", |
| 170 | + " K = np.zeros((n_samples, n_samples))\n", |
| 171 | + " for i in range(n_samples):\n", |
| 172 | + " for j in range(n_samples):\n", |
| 173 | + " K[i, j] = linear_kernel(X[i], X[j])\n", |
| 174 | + "\n", |
| 175 | + " P = cvxopt.matrix(np.outer(y, y) * K)\n", |
| 176 | + " q = cvxopt.matrix(np.ones(n_samples) * -1)\n", |
| 177 | + " A = cvxopt.matrix(y, (1, n_samples))\n", |
| 178 | + " b = cvxopt.matrix(0.0)\n", |
| 179 | + "\n", |
| 180 | + " if C is None:\n", |
| 181 | + " G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))\n", |
| 182 | + " h = cvxopt.matrix(np.zeros(n_samples))\n", |
| 183 | + " else:\n", |
| 184 | + " tmp1 = np.diag(np.ones(n_samples) * -1)\n", |
| 185 | + " tmp2 = np.identity(n_samples)\n", |
| 186 | + " G = cvxopt.matrix(np.vstack((tmp1, tmp2)))\n", |
| 187 | + " tmp1 = np.zeros(n_samples)\n", |
| 188 | + " tmp2 = np.ones(n_samples) * C\n", |
| 189 | + " h = cvxopt.matrix(np.hstack((tmp1, tmp2)))\n", |
| 190 | + "\n", |
| 191 | + " # solve QP problem\n", |
| 192 | + " solution = cvxopt.solvers.qp(P, q, G, h, A, b)\n", |
| 193 | + "\n", |
| 194 | + " # Lagrange multipliers\n", |
| 195 | + " a = np.ravel(solution['x'])\n", |
| 196 | + " # Support vectors have non zero lagrange multipliers\n", |
| 197 | + " sv = a > 1e-5\n", |
| 198 | + " ind = np.arange(len(a))[sv]\n", |
| 199 | + " a = a[sv]\n", |
| 200 | + " sv_x = X[sv]\n", |
| 201 | + " sv_y = y[sv]\n", |
| 202 | + " print(\"%d support vectors out of %d points\" % (len(a), n_samples))\n", |
| 203 | + "\n", |
| 204 | + " # Intercept\n", |
| 205 | + " b = 0\n", |
| 206 | + " for n in range(len(a)):\n", |
| 207 | + " b += sv_y[n]\n", |
| 208 | + " b -= np.sum(a * sv_y * K[ind[n], sv])\n", |
| 209 | + " b /= len(a)\n", |
| 210 | + "\n", |
| 211 | + " # Weight vector\n", |
| 212 | + " w = np.zeros(n_features)\n", |
| 213 | + " for n in range(len(a)):\n", |
| 214 | + " w += a[n] * sv_y[n] * sv[n]\n", |
| 215 | + " else:\n", |
| 216 | + " w = None" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "code", |
| 221 | + "execution_count": 28, |
| 222 | + "metadata": {}, |
| 223 | + "outputs": [ |
| 224 | + { |
| 225 | + "name": "stdout", |
| 226 | + "output_type": "stream", |
| 227 | + "text": [ |
| 228 | + " pcost dcost gap pres dres\n", |
| 229 | + " 0: -5.5569e+04 -7.4952e+07 8e+07 1e-02 5e-11\n", |
| 230 | + " 1: -7.3687e+04 -9.6455e+05 9e+05 1e-04 5e-11\n", |
| 231 | + " 2: -8.2531e+04 -1.6849e+05 9e+04 1e-05 6e-11\n", |
| 232 | + " 3: -1.2558e+05 -1.4468e+05 2e+04 1e-06 8e-11\n", |
| 233 | + " 4: -1.2939e+05 -1.3440e+05 5e+03 3e-07 8e-11\n", |
| 234 | + " 5: -1.3084e+05 -1.3145e+05 6e+02 2e-08 9e-11\n", |
| 235 | + " 6: -1.3103e+05 -1.3115e+05 1e+02 4e-09 9e-11\n", |
| 236 | + " 7: -1.3107e+05 -1.3109e+05 2e+01 6e-10 1e-10\n", |
| 237 | + " 8: -1.3108e+05 -1.3108e+05 2e+00 4e-11 1e-10\n", |
| 238 | + " 9: -1.3108e+05 -1.3108e+05 2e-01 3e-11 1e-10\n", |
| 239 | + "10: -1.3108e+05 -1.3108e+05 2e-03 4e-11 1e-10\n", |
| 240 | + "Optimal solution found.\n", |
| 241 | + "158 support vectors out of 180 points\n" |
| 242 | + ] |
| 243 | + } |
| 244 | + ], |
| 245 | + "source": [ |
| 246 | + "w, b = fit(X_train, y_train, C=1000.1)" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "code", |
| 251 | + "execution_count": null, |
| 252 | + "metadata": {}, |
| 253 | + "outputs": [], |
| 254 | + "source": [] |
| 255 | + } |
| 256 | + ], |
| 257 | + "metadata": { |
| 258 | + "kernelspec": { |
| 259 | + "display_name": "Python 3", |
| 260 | + "language": "python", |
| 261 | + "name": "python3" |
| 262 | + }, |
| 263 | + "language_info": { |
| 264 | + "codemirror_mode": { |
| 265 | + "name": "ipython", |
| 266 | + "version": 3 |
| 267 | + }, |
| 268 | + "file_extension": ".py", |
| 269 | + "mimetype": "text/x-python", |
| 270 | + "name": "python", |
| 271 | + "nbconvert_exporter": "python", |
| 272 | + "pygments_lexer": "ipython3", |
| 273 | + "version": "3.6.5" |
| 274 | + }, |
| 275 | + "toc": { |
| 276 | + "base_numbering": 1, |
| 277 | + "nav_menu": {}, |
| 278 | + "number_sections": true, |
| 279 | + "sideBar": true, |
| 280 | + "skip_h1_title": false, |
| 281 | + "title_cell": "Table of Contents", |
| 282 | + "title_sidebar": "Contents", |
| 283 | + "toc_cell": false, |
| 284 | + "toc_position": {}, |
| 285 | + "toc_section_display": true, |
| 286 | + "toc_window_display": false |
| 287 | + } |
| 288 | + }, |
| 289 | + "nbformat": 4, |
| 290 | + "nbformat_minor": 2 |
| 291 | +} |
0 commit comments