Skip to content

Commit 3a77b72

Browse files
authored
Create main.py
1 parent 253d26c commit 3a77b72

File tree

1 file changed

+93
-0
lines changed

1 file changed

+93
-0
lines changed

feedforward_neural_network/main.py

Lines changed: 93 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,93 @@
1+
import torch
2+
import torch.nn as nn
3+
import torchvision
4+
import torchvision.transforms as transforms
5+
6+
7+
# Device configuration
8+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
9+
10+
# Hyper-parameters
11+
input_size = 784
12+
hidden_size = 500
13+
num_classes = 10
14+
num_epochs = 5
15+
batch_size = 100
16+
learning_rate = 0.001
17+
18+
# MNIST dataset
19+
train_dataset = torchvision.datasets.MNIST(root='../../data',
20+
train=True,
21+
transform=transforms.ToTensor(),
22+
download=True)
23+
24+
test_dataset = torchvision.datasets.MNIST(root='../../data',
25+
train=False,
26+
transform=transforms.ToTensor())
27+
28+
# Data loader
29+
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
30+
batch_size=batch_size,
31+
shuffle=True)
32+
33+
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
34+
batch_size=batch_size,
35+
shuffle=False)
36+
37+
# Fully connected neural network with one hidden layer
38+
class NeuralNet(nn.Module):
39+
def __init__(self, input_size, hidden_size, num_classes):
40+
super(NeuralNet, self).__init__()
41+
self.fc1 = nn.Linear(input_size, hidden_size)
42+
self.relu = nn.ReLU()
43+
self.fc2 = nn.Linear(hidden_size, num_classes)
44+
45+
def forward(self, x):
46+
out = self.fc1(x)
47+
out = self.relu(out)
48+
out = self.fc2(out)
49+
return out
50+
51+
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
52+
53+
# Loss and optimizer
54+
criterion = nn.CrossEntropyLoss()
55+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
56+
57+
# Train the model
58+
total_step = len(train_loader)
59+
for epoch in range(num_epochs):
60+
for i, (images, labels) in enumerate(train_loader):
61+
# Move tensors to the configured device
62+
images = images.reshape(-1, 28*28).to(device)
63+
labels = labels.to(device)
64+
65+
# Forward pass
66+
outputs = model(images)
67+
loss = criterion(outputs, labels)
68+
69+
# Backward and optimize
70+
optimizer.zero_grad()
71+
loss.backward()
72+
optimizer.step()
73+
74+
if (i+1) % 100 == 0:
75+
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
76+
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
77+
78+
# Test the model
79+
# In test phase, we don't need to compute gradients (for memory efficiency)
80+
with torch.no_grad():
81+
correct = 0
82+
total = 0
83+
for images, labels in test_loader:
84+
images = images.reshape(-1, 28*28).to(device)
85+
labels = labels.to(device)
86+
outputs = model(images)
87+
_, predicted = torch.max(outputs.data, 1)
88+
total += labels.size(0)
89+
correct += (predicted == labels).sum().item()
90+
91+
print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
92+
93+
# Save the model checkpoint

0 commit comments

Comments
 (0)