3434
3535
3636def test_multi_target_regression ():
37- X , y = datasets .make_regression (n_targets = 3 )
37+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
3838 X_train , y_train = X [:50 ], y [:50 ]
3939 X_test , y_test = X [50 :], y [50 :]
4040
@@ -52,7 +52,7 @@ def test_multi_target_regression():
5252
5353
5454def test_multi_target_regression_partial_fit ():
55- X , y = datasets .make_regression (n_targets = 3 )
55+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
5656 X_train , y_train = X [:50 ], y [:50 ]
5757 X_test , y_test = X [50 :], y [50 :]
5858
@@ -76,15 +76,15 @@ def test_multi_target_regression_partial_fit():
7676
7777def test_multi_target_regression_one_target ():
7878 # Test multi target regression raises
79- X , y = datasets .make_regression (n_targets = 1 )
79+ X , y = datasets .make_regression (n_targets = 1 , random_state = 0 )
8080 rgr = MultiOutputRegressor (GradientBoostingRegressor (random_state = 0 ))
8181 msg = "at least two dimensions"
8282 with pytest .raises (ValueError , match = msg ):
8383 rgr .fit (X , y )
8484
8585
8686def test_multi_target_sparse_regression ():
87- X , y = datasets .make_regression (n_targets = 3 )
87+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
8888 X_train , y_train = X [:50 ], y [:50 ]
8989 X_test = X [50 :]
9090
@@ -601,7 +601,7 @@ def fit(self, X, y, sample_weight=None, **fit_params):
601601 ),
602602 (
603603 MultiOutputRegressor (DummyRegressorWithFitParams ()),
604- datasets .make_regression (n_targets = 3 ),
604+ datasets .make_regression (n_targets = 3 , random_state = 0 ),
605605 ),
606606 ],
607607)
@@ -616,7 +616,7 @@ def test_multioutput_estimator_with_fit_params(estimator, dataset):
616616def test_regressor_chain_w_fit_params ():
617617 # Make sure fit_params are properly propagated to the sub-estimators
618618 rng = np .random .RandomState (0 )
619- X , y = datasets .make_regression (n_targets = 3 )
619+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
620620 weight = rng .rand (y .shape [0 ])
621621
622622 class MySGD (SGDRegressor ):
0 commit comments