Skip to content

Commit fbe475e

Browse files
committed
modified table of contents
1 parent f870107 commit fbe475e

File tree

1 file changed

+15
-57
lines changed

1 file changed

+15
-57
lines changed

nemo/NeMo-Data-Designer/README.md

Lines changed: 15 additions & 57 deletions
Original file line numberDiff line numberDiff line change
@@ -15,63 +15,21 @@ This directory contains the tutorial notebooks for getting started with NeMo Dat
1515

1616
### 🎯 Advanced Tutorials
1717

18-
#### 🧑‍🤝‍🧑 Person Samplers
19-
20-
| Notebook | Description |
21-
|---------------------------------------------------|----------------------------------------------------------------------------------|
22-
| [person-sampler-tutorial.ipynb](./advanced/person-samplers/person-sampler-tutorial.ipynb) | Master the Person Sampler to generate realistic personal information |
23-
24-
#### 🏥 Healthcare Datasets
25-
26-
| Notebook | Description |
27-
|---------------------------------------------------|----------------------------------------------------------------------------------|
28-
| [clinical-trials.ipynb](./advanced/healthcare-datasets/clinical-trials.ipynb) | Build synthetic clinical trial datasets with realistic PII for testing data protection |
29-
| [insurance-claims.ipynb](./advanced/healthcare-datasets/insurance-claims.ipynb) | Create synthetic insurance claims datasets with realistic claim data and processing information |
30-
| [physician-notes-with-realistic-personal-details.ipynb](./advanced/healthcare-datasets/physician-notes-with-realistic-personal-details.ipynb) | Generate realistic patient data and physician notes with embedded personal information |
31-
32-
#### 🧾 Forms & Documents
33-
34-
| Notebook | Description |
35-
|---------------------------------------------------|----------------------------------------------------------------------------------|
36-
| [w2-dataset.ipynb](./advanced/forms/w2-dataset.ipynb) | Generate synthetic W-2 tax form datasets with realistic employee and employer information |
37-
38-
#### 💬 Conversational AI
39-
40-
| Notebook | Description |
41-
|---------------------------------------------------|----------------------------------------------------------------------------------|
42-
| [multi-turn-conversation.ipynb](./advanced/multi-turn-chat/multi-turn-conversation.ipynb) | Build synthetic conversational data with realistic person details and multi-turn dialogues |
43-
44-
#### 🖼️ Multimodal
45-
46-
| Notebook | Description |
47-
|---------------------------------------------------|----------------------------------------------------------------------------------|
48-
| [visual-question-answering-using-vlm.ipynb](./advanced/multimodal/visual-question-answering-using-vlm.ipynb) | Create visual question answering datasets using Vision Language Models |
49-
50-
#### ❓ Q&A Generation
51-
52-
| Notebook | Description |
53-
|---------------------------------------------------|----------------------------------------------------------------------------------|
54-
| [product-question-answer-generator.ipynb](./advanced/qa-generation/product-question-answer-generator.ipynb) | Build product information datasets with corresponding questions and answers |
55-
56-
#### 🔍 RAG & Retrieval
57-
58-
| Notebook | Description |
59-
|---------------------------------------------------|----------------------------------------------------------------------------------|
60-
| [generate-rag-evaluation-dataset.ipynb](./advanced/rag-examples/generate-rag-evaluation-dataset.ipynb) | Generate diverse RAG evaluation datasets for testing retrieval-augmented generation systems |
61-
62-
#### 🧠 Reasoning
63-
64-
| Notebook | Description |
65-
|---------------------------------------------------|----------------------------------------------------------------------------------|
66-
| [reasoning-traces.ipynb](./advanced/reasoning/reasoning-traces.ipynb) | Build synthetic reasoning traces to demonstrate step-by-step problem-solving processes |
67-
68-
#### 💻 Text-to-Code
69-
70-
| Notebook | Description |
71-
|---------------------------------------------------|----------------------------------------------------------------------------------|
72-
| [text-to-python.ipynb](./advanced/text-to-code/text-to-python.ipynb) | Generate Python code from natural language instructions with validation and evaluation |
73-
| [text-to-python-evol.ipynb](./advanced/text-to-code/text-to-python-evol.ipynb) | Build advanced Python code generation with evolutionary improvements and iterative refinement |
74-
| [text-to-sql.ipynb](./advanced/text-to-code/text-to-sql.ipynb) | Create SQL queries from natural language descriptions with validation and testing |
18+
| Notebook | Domain | Description |
19+
|---------------------------------------------------|---------------------|-----------------------------------------------------------------|
20+
| [person-sampler-tutorial.ipynb](./advanced/person-samplers/person-sampler-tutorial.ipynb) | Persona Samplers | Generate realistic personas using the person sampler |
21+
| [clinical-trials.ipynb](./advanced/healthcare-datasets/clinical-trials.ipynb) | Healthcare | Build synthetic clinical trial datasets with realistic PII for testing data protection |
22+
| [insurance-claims.ipynb](./advanced/healthcare-datasets/insurance-claims.ipynb) | Healthcare | Create synthetic insurance claims datasets with realistic claim data and processing information |
23+
| [physician-notes-with-realistic-personal-details.ipynb](./advanced/healthcare-datasets/physician-notes-with-realistic-personal-details.ipynb) | Healthcare | Generate realistic patient data and physician notes with embedded personal information |
24+
| [w2-dataset.ipynb](./advanced/forms/w2-dataset.ipynb) | Forms & Documents | Generate synthetic W-2 tax form datasets with realistic employee and employer information |
25+
| [multi-turn-conversation.ipynb](./advanced/multi-turn-chat/multi-turn-conversation.ipynb) | Conversational AI | Build synthetic conversational data with realistic person details and multi-turn dialogues |
26+
| [visual-question-answering-using-vlm.ipynb](./advanced/multimodal/visual-question-answering-using-vlm.ipynb) | Multimodal | Create visual question answering datasets using Vision Language Models |
27+
| [product-question-answer-generator.ipynb](./advanced/qa-generation/product-question-answer-generator.ipynb) | Q&A Generation | Build product information datasets with corresponding questions and answers |
28+
| [generate-rag-evaluation-dataset.ipynb](./advanced/rag-examples/generate-rag-evaluation-dataset.ipynb) | RAG & Retrieval | Generate diverse RAG evaluation datasets for testing retrieval-augmented generation systems |
29+
| [reasoning-traces.ipynb](./advanced/reasoning/reasoning-traces.ipynb) | Reasoning | Build synthetic reasoning traces to demonstrate step-by-step problem-solving processes |
30+
| [text-to-python.ipynb](./advanced/text-to-code/text-to-python.ipynb) | Text-to-Code | Generate Python code from natural language instructions with validation and evaluation |
31+
| [text-to-python-evol.ipynb](./advanced/text-to-code/text-to-python-evol.ipynb) | Text-to-Code | Build advanced Python code generation with evolutionary improvements and iterative refinement |
32+
| [text-to-sql.ipynb](./advanced/text-to-code/text-to-sql.ipynb) | Text-to-Code | Create SQL queries from natural language descriptions with validation and testing |
7533

7634
## 🚀 Deploying the NeMo Data Designer Microservice
7735

0 commit comments

Comments
 (0)