@@ -312,25 +312,38 @@ class ResNet(BaseModule):
312312
313313 Args:
314314 depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
315- in_channels (int): Number of input image channels. Default" 3.
315+ in_channels (int): Number of input image channels. Default: 3.
316316 stem_channels (int): Number of stem channels. Default: 64.
317317 base_channels (int): Number of base channels of res layer. Default: 64.
318- num_stages (int): Resnet stages, normally 4.
318+ num_stages (int): Resnet stages, normally 4. Default: 4.
319319 strides (Sequence[int]): Strides of the first block of each stage.
320+ Default: (1, 2, 2, 2).
320321 dilations (Sequence[int]): Dilation of each stage.
322+ Default: (1, 1, 1, 1).
321323 out_indices (Sequence[int]): Output from which stages.
324+ Default: (0, 1, 2, 3).
322325 style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
323326 layer is the 3x3 conv layer, otherwise the stride-two layer is
324- the first 1x1 conv layer.
325- deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
327+ the first 1x1 conv layer. Default: 'pytorch'.
328+ deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
329+ Default: False.
326330 avg_down (bool): Use AvgPool instead of stride conv when
327- downsampling in the bottleneck.
331+ downsampling in the bottleneck. Default: False.
328332 frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
329- -1 means not freezing any parameters.
333+ -1 means not freezing any parameters. Default: -1.
334+ conv_cfg (dict | None): Dictionary to construct and config conv layer.
335+ When conv_cfg is None, cfg will be set to dict(type='Conv2d').
336+ Default: None.
330337 norm_cfg (dict): Dictionary to construct and config norm layer.
338+ Default: dict(type='BN', requires_grad=True).
331339 norm_eval (bool): Whether to set norm layers to eval mode, namely,
332340 freeze running stats (mean and var). Note: Effect on Batch Norm
333- and its variants only.
341+ and its variants only. Default: False.
342+ dcn (dict | None): Dictionary to construct and config DCN conv layer.
343+ When dcn is not None, conv_cfg must be None. Default: None.
344+ stage_with_dcn (Sequence[bool]): Whether to set DCN conv for each
345+ stage. The length of stage_with_dcn is equal to num_stages.
346+ Default: (False, False, False, False).
334347 plugins (list[dict]): List of plugins for stages, each dict contains:
335348
336349 - cfg (dict, required): Cfg dict to build plugin.
@@ -339,18 +352,19 @@ class ResNet(BaseModule):
339352 options: 'after_conv1', 'after_conv2', 'after_conv3'.
340353
341354 - stages (tuple[bool], optional): Stages to apply plugin, length
342- should be same as 'num_stages'
355+ should be same as 'num_stages'.
356+ Default: None.
343357 multi_grid (Sequence[int]|None): Multi grid dilation rates of last
344- stage. Default: None
358+ stage. Default: None.
345359 contract_dilation (bool): Whether contract first dilation of each layer
346- Default: False
360+ Default: False.
347361 with_cp (bool): Use checkpoint or not. Using checkpoint will save some
348- memory while slowing down the training speed.
362+ memory while slowing down the training speed. Default: False.
349363 zero_init_residual (bool): Whether to use zero init for last norm layer
350- in resblocks to let them behave as identity.
351- pretrained (str, optional): model pretrained path. Default: None
364+ in resblocks to let them behave as identity. Default: True.
365+ pretrained (str, optional): model pretrained path. Default: None.
352366 init_cfg (dict or list[dict], optional): Initialization config dict.
353- Default: None
367+ Default: None.
354368
355369 Example:
356370 >>> from mmseg.models import ResNet
0 commit comments