Skip to content

Commit 2df77ee

Browse files
committed
Fix torchscript compat and features_only behaviour in GhostNet PR. A few minor formatting changes. Reuse existing layers.
1 parent d793deb commit 2df77ee

File tree

1 file changed

+44
-91
lines changed

1 file changed

+44
-91
lines changed

timm/models/ghostnet.py

Lines changed: 44 additions & 91 deletions
Original file line numberDiff line numberDiff line change
@@ -4,13 +4,17 @@
44
The train script of the model is similar to that of MobileNetV3
55
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch
66
"""
7+
import math
8+
from functools import partial
9+
710
import torch
811
import torch.nn as nn
912
import torch.nn.functional as F
10-
import math
13+
1114

1215
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
13-
from .layers import SelectAdaptivePool2d
16+
from .layers import SelectAdaptivePool2d, Linear, hard_sigmoid
17+
from .efficientnet_blocks import SqueezeExcite, ConvBnAct, make_divisible
1418
from .helpers import build_model_with_cfg
1519
from .registry import register_model
1620

@@ -36,70 +40,15 @@ def _cfg(url='', **kwargs):
3640
}
3741

3842

39-
def _make_divisible(v, divisor, min_value=None):
40-
"""
41-
This function is taken from the original tf repo.
42-
It ensures that all layers have a channel number that is divisible by 8
43-
It can be seen here:
44-
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
45-
"""
46-
if min_value is None:
47-
min_value = divisor
48-
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
49-
# Make sure that round down does not go down by more than 10%.
50-
if new_v < 0.9 * v:
51-
new_v += divisor
52-
return new_v
53-
54-
55-
def hard_sigmoid(x, inplace: bool = False):
56-
if inplace:
57-
return x.add_(3.).clamp_(0., 6.).div_(6.)
58-
else:
59-
return F.relu6(x + 3.) / 6.
60-
61-
62-
class SqueezeExcite(nn.Module):
63-
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
64-
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
65-
super(SqueezeExcite, self).__init__()
66-
self.gate_fn = gate_fn
67-
reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
68-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
69-
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
70-
self.act1 = act_layer(inplace=True)
71-
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
72-
73-
def forward(self, x):
74-
x_se = self.avg_pool(x)
75-
x_se = self.conv_reduce(x_se)
76-
x_se = self.act1(x_se)
77-
x_se = self.conv_expand(x_se)
78-
x = x * self.gate_fn(x_se)
79-
return x
80-
81-
82-
class ConvBnAct(nn.Module):
83-
def __init__(self, in_chs, out_chs, kernel_size,
84-
stride=1, act_layer=nn.ReLU):
85-
super(ConvBnAct, self).__init__()
86-
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size//2, bias=False)
87-
self.bn1 = nn.BatchNorm2d(out_chs)
88-
self.act1 = act_layer(inplace=True)
89-
90-
def forward(self, x):
91-
x = self.conv(x)
92-
x = self.bn1(x)
93-
x = self.act1(x)
94-
return x
43+
_SE_LAYER = partial(SqueezeExcite, gate_fn=hard_sigmoid, divisor=4)
9544

9645

9746
class GhostModule(nn.Module):
9847
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
9948
super(GhostModule, self).__init__()
10049
self.oup = oup
10150
init_channels = math.ceil(oup / ratio)
102-
new_channels = init_channels*(ratio-1)
51+
new_channels = init_channels * (ratio - 1)
10352

10453
self.primary_conv = nn.Sequential(
10554
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
@@ -116,8 +65,8 @@ def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=T
11665
def forward(self, x):
11766
x1 = self.primary_conv(x)
11867
x2 = self.cheap_operation(x1)
119-
out = torch.cat([x1,x2], dim=1)
120-
return out[:,:self.oup,:,:]
68+
out = torch.cat([x1, x2], dim=1)
69+
return out[:, :self.oup, :, :]
12170

12271

12372
class GhostBottleneck(nn.Module):
@@ -134,27 +83,28 @@ def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
13483

13584
# Depth-wise convolution
13685
if self.stride > 1:
137-
self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride,
138-
padding=(dw_kernel_size-1)//2,
139-
groups=mid_chs, bias=False)
86+
self.conv_dw = nn.Conv2d(
87+
mid_chs, mid_chs, dw_kernel_size, stride=stride,
88+
padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False)
14089
self.bn_dw = nn.BatchNorm2d(mid_chs)
90+
else:
91+
self.conv_dw = None
92+
self.bn_dw = None
14193

14294
# Squeeze-and-excitation
143-
if has_se:
144-
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
145-
else:
146-
self.se = None
95+
self.se = _SE_LAYER(mid_chs, se_ratio=se_ratio) if has_se else None
14796

14897
# Point-wise linear projection
14998
self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)
15099

151100
# shortcut
152-
if (in_chs == out_chs and self.stride == 1):
101+
if in_chs == out_chs and self.stride == 1:
153102
self.shortcut = nn.Sequential()
154103
else:
155104
self.shortcut = nn.Sequential(
156-
nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
157-
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
105+
nn.Conv2d(
106+
in_chs, in_chs, dw_kernel_size, stride=stride,
107+
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
158108
nn.BatchNorm2d(in_chs),
159109
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
160110
nn.BatchNorm2d(out_chs),
@@ -168,7 +118,7 @@ def forward(self, x):
168118
x = self.ghost1(x)
169119

170120
# Depth-wise convolution
171-
if self.stride > 1:
121+
if self.conv_dw is not None:
172122
x = self.conv_dw(x)
173123
x = self.bn_dw(x)
174124

@@ -184,52 +134,55 @@ def forward(self, x):
184134

185135

186136
class GhostNet(nn.Module):
187-
def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2, in_chans=3):
137+
def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2, in_chans=3, output_stride=32):
188138
super(GhostNet, self).__init__()
189139
# setting of inverted residual blocks
140+
assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported'
190141
self.cfgs = cfgs
191142
self.num_classes = num_classes
192143
self.dropout = dropout
193144
self.feature_info = []
194145

195146
# building first layer
196-
output_channel = _make_divisible(16 * width, 4)
197-
self.conv_stem = nn.Conv2d(in_chans, output_channel, 3, 2, 1, bias=False)
198-
self.feature_info.append(dict(num_chs=output_channel, reduction=2, module=f'conv_stem'))
199-
self.bn1 = nn.BatchNorm2d(output_channel)
147+
stem_chs = make_divisible(16 * width, 4)
148+
self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False)
149+
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem'))
150+
self.bn1 = nn.BatchNorm2d(stem_chs)
200151
self.act1 = nn.ReLU(inplace=True)
201-
input_channel = output_channel
152+
prev_chs = stem_chs
202153

203154
# building inverted residual blocks
204155
stages = nn.ModuleList([])
205156
block = GhostBottleneck
206157
stage_idx = 0
158+
net_stride = 2
207159
for cfg in self.cfgs:
208160
layers = []
161+
s = 1
209162
for k, exp_size, c, se_ratio, s in cfg:
210-
output_channel = _make_divisible(c * width, 4)
211-
hidden_channel = _make_divisible(exp_size * width, 4)
212-
layers.append(block(input_channel, hidden_channel, output_channel, k, s,
213-
se_ratio=se_ratio))
214-
input_channel = output_channel
163+
out_chs = make_divisible(c * width, 4)
164+
mid_chs = make_divisible(exp_size * width, 4)
165+
layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio))
166+
prev_chs = out_chs
215167
if s > 1:
216-
self.feature_info.append(dict(num_chs=output_channel, reduction=2**(stage_idx+2),
217-
module=f'blocks.{stage_idx}'))
168+
net_stride *= 2
169+
self.feature_info.append(dict(
170+
num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}'))
218171
stages.append(nn.Sequential(*layers))
219172
stage_idx += 1
220173

221-
output_channel = _make_divisible(exp_size * width, 4)
222-
stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1)))
223-
self.pool_dim = input_channel = output_channel
174+
out_chs = make_divisible(exp_size * width, 4)
175+
stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1)))
176+
self.pool_dim = prev_chs = out_chs
224177

225178
self.blocks = nn.Sequential(*stages)
226179

227180
# building last several layers
228-
self.num_features = output_channel = 1280
181+
self.num_features = out_chs = 1280
229182
self.global_pool = SelectAdaptivePool2d(pool_type='avg')
230-
self.conv_head = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=True)
183+
self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True)
231184
self.act2 = nn.ReLU(inplace=True)
232-
self.classifier = nn.Linear(output_channel, num_classes)
185+
self.classifier = Linear(out_chs, num_classes)
233186

234187
def get_classifier(self):
235188
return self.classifier

0 commit comments

Comments
 (0)