-
Notifications
You must be signed in to change notification settings - Fork 15
Open
Labels
enhancementNew feature or requestNew feature or request
Description
Hello again!
It would be useful if you could add the TTM of net debt we take from balance_sheet.
Here is a workaround I have written in case is useful:
import pandas as pd
ticker = Ticker('GOOGL')
df = ticker.quarterly_balance_sheet().df()
long_term_debt = df[df["Breakdown"] == "Long Term Debt And Capital Lease Obligation"]
cash_and_sti = df[df["Breakdown"] == "Cash, Cash Equivalents & Short Term Investments"]
long_term_debt = long_term_debt.drop(columns=["Breakdown"]).squeeze()
cash_and_sti = cash_and_sti.drop(columns=["Breakdown"]).squeeze()
long_term_debt = pd.to_numeric(long_term_debt, errors="coerce")
cash_and_sti = pd.to_numeric(cash_and_sti, errors="coerce")
net_debt = long_term_debt - cash_and_sti
result = pd.DataFrame({
"Long Term Debt (M)": (long_term_debt / 1_000_000).round(3),
"Cash & STI (M)": (cash_and_sti / 1_000_000).round(3),
"Net Debt (M)": (net_debt / 1_000_000).round(3)
})
print(result.T)
2025-06-30 2025-03-31 2024-12-31 2024-09-30 2024-06-30 2024-03-31 2023-12-31 2023-09-30 2023-06-30 2023-03-31 2022-12-31 2022-09-30 2022-06-30
Long Term Debt (M) 35559.0 22564.0 22574.0 23951.0 24946.0 25185.0 24330.0 26331.0 26451.0 NaN NaN NaN 26431.0
Cash & STI (M) 95148.0 95328.0 95657.0 93230.0 100725.0 108090.0 110916.0 119935.0 118332.0 NaN NaN NaN 124997.0
Net Debt (M) -59589.0 -72764.0 -73083.0 -69279.0 -75779.0 -82905.0 -86586.0 -93604.0 -91881.0 NaN NaN NaN -98566.0
This shows the actual company's debt much clearer. :)
bwzheng2010
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request