|
| 1 | +# Copyright (c) OpenMMLab. All rights reserved. |
| 2 | +from mmcv.transforms.loading import LoadImageFromFile |
| 3 | +from mmcv.transforms.processing import (RandomFlip, RandomResize, Resize, |
| 4 | + TestTimeAug) |
| 5 | +from mmengine.dataset.sampler import DefaultSampler, InfiniteSampler |
| 6 | + |
| 7 | +from mmseg.datasets.potsdam import PotsdamDataset |
| 8 | +from mmseg.datasets.transforms.formatting import PackSegInputs |
| 9 | +from mmseg.datasets.transforms.loading import LoadAnnotations |
| 10 | +from mmseg.datasets.transforms.transforms import (PhotoMetricDistortion, |
| 11 | + RandomCrop) |
| 12 | +from mmseg.evaluation import IoUMetric |
| 13 | + |
| 14 | +# dataset settings |
| 15 | +dataset_type = PotsdamDataset |
| 16 | +data_root = 'data/potsdam' |
| 17 | +crop_size = (512, 512) |
| 18 | +train_pipeline = [ |
| 19 | + dict(type=LoadImageFromFile), |
| 20 | + dict(type=LoadAnnotations, reduce_zero_label=True), |
| 21 | + dict( |
| 22 | + type=RandomResize, |
| 23 | + scale=(512, 512), |
| 24 | + ratio_range=(0.5, 2.0), |
| 25 | + keep_ratio=True), |
| 26 | + dict(type=RandomCrop, crop_size=crop_size, cat_max_ratio=0.75), |
| 27 | + dict(type=RandomFlip, prob=0.5), |
| 28 | + dict(type=PhotoMetricDistortion), |
| 29 | + dict(type=PackSegInputs) |
| 30 | +] |
| 31 | +test_pipeline = [ |
| 32 | + dict(type=LoadImageFromFile), |
| 33 | + dict(type=Resize, scale=(512, 512), keep_ratio=True), |
| 34 | + # add loading annotation after ``Resize`` because ground truth |
| 35 | + # does not need to do resize data transform |
| 36 | + dict(type=LoadAnnotations, reduce_zero_label=True), |
| 37 | + dict(type=PackSegInputs) |
| 38 | +] |
| 39 | +img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] |
| 40 | +tta_pipeline = [ |
| 41 | + dict(type=LoadImageFromFile, backend_args=None), |
| 42 | + dict( |
| 43 | + type=TestTimeAug, |
| 44 | + transforms=[[ |
| 45 | + dict(type=Resize, scale_factor=r, keep_ratio=True) |
| 46 | + for r in img_ratios |
| 47 | + ], |
| 48 | + [ |
| 49 | + dict(type=RandomFlip, prob=0., direction='horizontal'), |
| 50 | + dict(type=RandomFlip, prob=1., direction='horizontal') |
| 51 | + ], [dict(type=LoadAnnotations)], |
| 52 | + [dict(type=PackSegInputs)]]) |
| 53 | +] |
| 54 | + |
| 55 | +train_dataloader = dict( |
| 56 | + batch_size=2, |
| 57 | + num_workers=4, |
| 58 | + persistent_workers=True, |
| 59 | + sampler=dict(type=InfiniteSampler, shuffle=True), |
| 60 | + dataset=dict( |
| 61 | + type=dataset_type, |
| 62 | + data_root=data_root, |
| 63 | + data_prefix=dict( |
| 64 | + img_path='img_dir/train', seg_map_path='ann_dir/train'), |
| 65 | + pipeline=train_pipeline)) |
| 66 | + |
| 67 | +val_dataloader = dict( |
| 68 | + batch_size=1, |
| 69 | + num_workers=4, |
| 70 | + persistent_workers=True, |
| 71 | + sampler=dict(type=DefaultSampler, shuffle=False), |
| 72 | + dataset=dict( |
| 73 | + type=dataset_type, |
| 74 | + data_root=data_root, |
| 75 | + data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'), |
| 76 | + pipeline=test_pipeline)) |
| 77 | +test_dataloader = val_dataloader |
| 78 | + |
| 79 | +val_evaluator = dict( |
| 80 | + type=IoUMetric, iou_metrics=['mIoU']) # 'mDice', 'mFscore' |
| 81 | +test_evaluator = val_evaluator |
0 commit comments