Skip to content

Commit 61c3092

Browse files
Update generated Python Op docs.
Change: 137750783
1 parent 4f50a5f commit 61c3092

File tree

2 files changed

+10
-458
lines changed

2 files changed

+10
-458
lines changed

tensorflow/g3doc/api_docs/python/contrib.learn.md

Lines changed: 5 additions & 229 deletions
Original file line numberDiff line numberDiff line change
@@ -1559,13 +1559,6 @@ Construct a `LinearRegressor` estimator object.
15591559
A `LinearRegressor` estimator.
15601560

15611561

1562-
- - -
1563-
1564-
#### `tf.contrib.learn.LinearRegressor.__repr__()` {#LinearRegressor.__repr__}
1565-
1566-
1567-
1568-
15691562
- - -
15701563

15711564
#### `tf.contrib.learn.LinearRegressor.bias_` {#LinearRegressor.bias_}
@@ -1584,164 +1577,39 @@ This method will be removed after the deprecation date. To inspect variables, us
15841577

15851578

15861579

1587-
- - -
1588-
1589-
#### `tf.contrib.learn.LinearRegressor.dnn_bias_` {#LinearRegressor.dnn_bias_}
1590-
1591-
Returns bias of deep neural network part. (deprecated)
1592-
1593-
THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-30.
1594-
Instructions for updating:
1595-
This method will be removed after the deprecation date. To inspect variables, use get_variable_names() and get_variable_value().
1596-
1597-
1598-
- - -
1599-
1600-
#### `tf.contrib.learn.LinearRegressor.dnn_weights_` {#LinearRegressor.dnn_weights_}
1601-
1602-
Returns weights of deep neural network part. (deprecated)
1603-
1604-
THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-30.
1605-
Instructions for updating:
1606-
This method will be removed after the deprecation date. To inspect variables, use get_variable_names() and get_variable_value().
1607-
1608-
16091580
- - -
16101581

16111582
#### `tf.contrib.learn.LinearRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None)` {#LinearRegressor.evaluate}
16121583

1613-
See `Evaluable`.
1614-
1615-
##### Raises:
1616-
1617-
1618-
* <b>`ValueError`</b>: If at least one of `x` or `y` is provided, and at least one of
1619-
`input_fn` or `feed_fn` is provided.
1620-
Or if `metrics` is not `None` or `dict`.
1584+
See evaluable.Evaluable.
16211585

16221586

16231587
- - -
16241588

1625-
#### `tf.contrib.learn.LinearRegressor.export(*args, **kwargs)` {#LinearRegressor.export}
1626-
1627-
Exports inference graph into given dir. (deprecated arguments)
1628-
1629-
SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23.
1630-
Instructions for updating:
1631-
The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be removed altogether.
1632-
1633-
Args:
1634-
export_dir: A string containing a directory to write the exported graph
1635-
and checkpoints.
1636-
input_fn: If `use_deprecated_input_fn` is true, then a function that given
1637-
`Tensor` of `Example` strings, parses it into features that are then
1638-
passed to the model. Otherwise, a function that takes no argument and
1639-
returns a tuple of (features, labels), where features is a dict of
1640-
string key to `Tensor` and labels is a `Tensor` that's currently not
1641-
used (and so can be `None`).
1642-
input_feature_key: Only used if `use_deprecated_input_fn` is false. String
1643-
key into the features dict returned by `input_fn` that corresponds to a
1644-
the raw `Example` strings `Tensor` that the exported model will take as
1645-
input. Can only be `None` if you're using a custom `signature_fn` that
1646-
does not use the first arg (examples).
1647-
use_deprecated_input_fn: Determines the signature format of `input_fn`.
1648-
signature_fn: Function that returns a default signature and a named
1649-
signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s
1650-
for features and `Tensor` or `dict` of `Tensor`s for predictions.
1651-
prediction_key: The key for a tensor in the `predictions` dict (output
1652-
from the `model_fn`) to use as the `predictions` input to the
1653-
`signature_fn`. Optional. If `None`, predictions will pass to
1654-
`signature_fn` without filtering.
1655-
default_batch_size: Default batch size of the `Example` placeholder.
1656-
exports_to_keep: Number of exports to keep.
1589+
#### `tf.contrib.learn.LinearRegressor.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None)` {#LinearRegressor.export}
16571590

1658-
Returns:
1659-
The string path to the exported directory. NB: this functionality was
1660-
added ca. 2016/09/25; clients that depend on the return value may need
1661-
to handle the case where this function returns None because subclasses
1662-
are not returning a value.
1591+
See BaseEstimator.export.
16631592

16641593

16651594
- - -
16661595

16671596
#### `tf.contrib.learn.LinearRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None)` {#LinearRegressor.fit}
16681597

1669-
See `Trainable`.
1670-
1671-
##### Raises:
1672-
1673-
1674-
* <b>`ValueError`</b>: If `x` or `y` are not `None` while `input_fn` is not `None`.
1675-
* <b>`ValueError`</b>: If both `steps` and `max_steps` are not `None`.
1676-
1677-
1678-
- - -
1679-
1680-
#### `tf.contrib.learn.LinearRegressor.get_params(deep=True)` {#LinearRegressor.get_params}
1681-
1682-
Get parameters for this estimator.
1683-
1684-
##### Args:
1685-
1686-
1687-
* <b>`deep`</b>: boolean, optional
1688-
1689-
If `True`, will return the parameters for this estimator and
1690-
contained subobjects that are estimators.
1691-
1692-
##### Returns:
1693-
1694-
params : mapping of string to any
1695-
Parameter names mapped to their values.
1598+
See trainable.Trainable.
16961599

16971600

16981601
- - -
16991602

17001603
#### `tf.contrib.learn.LinearRegressor.get_variable_names()` {#LinearRegressor.get_variable_names}
17011604

1702-
Returns list of all variable names in this model.
17031605

1704-
##### Returns:
1705-
1706-
List of names.
17071606

17081607

17091608
- - -
17101609

17111610
#### `tf.contrib.learn.LinearRegressor.get_variable_value(name)` {#LinearRegressor.get_variable_value}
17121611

1713-
Returns value of the variable given by name.
1714-
1715-
##### Args:
1716-
1717-
1718-
* <b>`name`</b>: string, name of the tensor.
1719-
1720-
##### Returns:
1721-
1722-
Numpy array - value of the tensor.
1723-
1724-
1725-
- - -
1726-
1727-
#### `tf.contrib.learn.LinearRegressor.linear_bias_` {#LinearRegressor.linear_bias_}
1728-
1729-
Returns bias of the linear part. (deprecated)
1730-
1731-
THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-30.
1732-
Instructions for updating:
1733-
This method will be removed after the deprecation date. To inspect variables, use get_variable_names() and get_variable_value().
1734-
1735-
1736-
- - -
17371612

1738-
#### `tf.contrib.learn.LinearRegressor.linear_weights_` {#LinearRegressor.linear_weights_}
1739-
1740-
Returns weights per feature of the linear part. (deprecated)
1741-
1742-
THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-30.
1743-
Instructions for updating:
1744-
This method will be removed after the deprecation date. To inspect variables, use get_variable_names() and get_variable_value().
17451613

17461614

17471615
- - -
@@ -1751,110 +1619,18 @@ This method will be removed after the deprecation date. To inspect variables, us
17511619

17521620

17531621

1754-
- - -
1755-
1756-
#### `tf.contrib.learn.LinearRegressor.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None)` {#LinearRegressor.partial_fit}
1757-
1758-
Incremental fit on a batch of samples.
1759-
1760-
This method is expected to be called several times consecutively
1761-
on different or the same chunks of the dataset. This either can
1762-
implement iterative training or out-of-core/online training.
1763-
1764-
This is especially useful when the whole dataset is too big to
1765-
fit in memory at the same time. Or when model is taking long time
1766-
to converge, and you want to split up training into subparts.
1767-
1768-
##### Args:
1769-
1770-
1771-
* <b>`x`</b>: Matrix of shape [n_samples, n_features...]. Can be iterator that
1772-
returns arrays of features. The training input samples for fitting the
1773-
model. If set, `input_fn` must be `None`.
1774-
* <b>`y`</b>: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be
1775-
iterator that returns array of labels. The training label values
1776-
(class labels in classification, real numbers in regression). If set,
1777-
`input_fn` must be `None`.
1778-
* <b>`input_fn`</b>: Input function. If set, `x`, `y`, and `batch_size` must be
1779-
`None`.
1780-
* <b>`steps`</b>: Number of steps for which to train model. If `None`, train forever.
1781-
* <b>`batch_size`</b>: minibatch size to use on the input, defaults to first
1782-
dimension of `x`. Must be `None` if `input_fn` is provided.
1783-
* <b>`monitors`</b>: List of `BaseMonitor` subclass instances. Used for callbacks
1784-
inside the training loop.
1785-
1786-
##### Returns:
1787-
1788-
`self`, for chaining.
1789-
1790-
##### Raises:
1791-
1792-
1793-
* <b>`ValueError`</b>: If at least one of `x` and `y` is provided, and `input_fn` is
1794-
provided.
1795-
1796-
17971622
- - -
17981623

17991624
#### `tf.contrib.learn.LinearRegressor.predict(*args, **kwargs)` {#LinearRegressor.predict}
18001625

1801-
Returns predictions for given features. (deprecated arguments)
1626+
Runs inference to determine the predicted class. (deprecated arguments)
18021627

18031628
SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15.
18041629
Instructions for updating:
18051630
The default behavior of predict() is changing. The default value for
18061631
as_iterable will change to True, and then the flag will be removed
18071632
altogether. The behavior of this flag is described below.
18081633

1809-
Args:
1810-
x: Matrix of shape [n_samples, n_features...]. Can be iterator that
1811-
returns arrays of features. The training input samples for fitting the
1812-
model. If set, `input_fn` must be `None`.
1813-
input_fn: Input function. If set, `x` and 'batch_size' must be `None`.
1814-
batch_size: Override default batch size. If set, 'input_fn' must be
1815-
'None'.
1816-
outputs: list of `str`, name of the output to predict.
1817-
If `None`, returns all.
1818-
as_iterable: If True, return an iterable which keeps yielding predictions
1819-
for each example until inputs are exhausted. Note: The inputs must
1820-
terminate if you want the iterable to terminate (e.g. be sure to pass
1821-
num_epochs=1 if you are using something like read_batch_features).
1822-
1823-
Returns:
1824-
A numpy array of predicted classes or regression values if the
1825-
constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict`
1826-
of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of
1827-
predictions if as_iterable is True.
1828-
1829-
Raises:
1830-
ValueError: If x and input_fn are both provided or both `None`.
1831-
1832-
1833-
- - -
1834-
1835-
#### `tf.contrib.learn.LinearRegressor.set_params(**params)` {#LinearRegressor.set_params}
1836-
1837-
Set the parameters of this estimator.
1838-
1839-
The method works on simple estimators as well as on nested objects
1840-
(such as pipelines). The former have parameters of the form
1841-
``<component>__<parameter>`` so that it's possible to update each
1842-
component of a nested object.
1843-
1844-
##### Args:
1845-
1846-
1847-
* <b>`**params`</b>: Parameters.
1848-
1849-
##### Returns:
1850-
1851-
self
1852-
1853-
##### Raises:
1854-
1855-
1856-
* <b>`ValueError`</b>: If params contain invalid names.
1857-
18581634

18591635
- - -
18601636

0 commit comments

Comments
 (0)