|
| 1 | +# Copyright (c) 2024, Sanghun Cho, Tri Dao. |
| 2 | + |
| 3 | +import pickle |
| 4 | +import math |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.nn.functional as F |
| 8 | + |
| 9 | +from einops import rearrange, repeat |
| 10 | +from flash_attn.layers.rotary import apply_rotary_emb |
| 11 | + |
| 12 | +from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward |
| 13 | +from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined |
| 14 | + |
| 15 | +from flash_attn import flash_attn_qkvpacked_func, flash_attn_func |
| 16 | + |
| 17 | +try: |
| 18 | + import xformers.ops as xops |
| 19 | +except ImportError: |
| 20 | + xops = None |
| 21 | + |
| 22 | + |
| 23 | +def generate_cos_sin(seqlen, rotary_dim, device, dtype): |
| 24 | + assert rotary_dim % 2 == 0 |
| 25 | + angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi |
| 26 | + cos = torch.cos(angle).to(dtype=dtype) |
| 27 | + sin = torch.sin(angle).to(dtype=dtype) |
| 28 | + return cos, sin |
| 29 | + |
| 30 | + |
| 31 | +def flash_rotary(q, k, v, cos, sin, causal=False): |
| 32 | + # corrected by @tridao comments |
| 33 | + q = apply_rotary_emb( |
| 34 | + q, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True |
| 35 | + ) |
| 36 | + k = apply_rotary_emb( |
| 37 | + k, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True |
| 38 | + ) |
| 39 | + |
| 40 | + return flash_attn_func(q, k, v, causal=causal) |
| 41 | + |
| 42 | + |
| 43 | +def attn_bias_from_alibi_slopes( |
| 44 | + slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False |
| 45 | +): |
| 46 | + batch, nheads = slopes.shape |
| 47 | + device = slopes.device |
| 48 | + slopes = rearrange(slopes, "b h -> b h 1 1") |
| 49 | + if causal: |
| 50 | + return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes |
| 51 | + else: |
| 52 | + row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1") |
| 53 | + col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long) |
| 54 | + sk = ( |
| 55 | + seqlen_k |
| 56 | + if key_padding_mask is None |
| 57 | + else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1") |
| 58 | + ) |
| 59 | + sq = ( |
| 60 | + seqlen_q |
| 61 | + if query_padding_mask is None |
| 62 | + else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1") |
| 63 | + ) |
| 64 | + relative_pos = torch.abs(row_idx + sk - sq - col_idx) |
| 65 | + return -slopes * relative_pos.to(dtype=slopes.dtype) |
| 66 | + |
| 67 | + |
| 68 | +def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"): |
| 69 | + assert mode in ["fwd", "bwd", "fwd_bwd"] |
| 70 | + f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1) |
| 71 | + return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f) |
| 72 | + |
| 73 | + |
| 74 | +def efficiency(flop, time): |
| 75 | + return (flop / time / 10**12) if not math.isnan(time) else 0.0 |
| 76 | + |
| 77 | + |
| 78 | +def attention_pytorch(q, k, v, dropout_p=0.0, causal=True, attn_bias=None): |
| 79 | + """ |
| 80 | + Arguments: |
| 81 | + q, k, v: (batch_size, seqlen, nheads, head_dim) |
| 82 | + dropout_p: float |
| 83 | + attn_bias: (batch_size, nheads, seqlen, seqlen) or (1, nheads, seqlen, seqlen) |
| 84 | + Output: |
| 85 | + output: (batch_size, seqlen, nheads, head_dim) |
| 86 | + """ |
| 87 | + batch_size, seqlen, nheads, d = q.shape |
| 88 | + q = rearrange(q, 'b t h d -> (b h) t d') |
| 89 | + k = rearrange(k, 'b s h d -> (b h) d s') |
| 90 | + softmax_scale = 1.0 / math.sqrt(d) |
| 91 | + # Preallocate attn_weights for `baddbmm` |
| 92 | + if attn_bias is not None: |
| 93 | + scores = rearrange(attn_bias, 'b h t s -> (b h) t s') |
| 94 | + else: |
| 95 | + scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=q.dtype, device=q.device) |
| 96 | + scores = rearrange(torch.baddbmm(scores, q, k, beta=1.0, alpha=softmax_scale), |
| 97 | + '(b h) t s -> b h t s', h=nheads) |
| 98 | + if causal: |
| 99 | + # "triu_tril_cuda_template" not implemented for 'BFloat16' |
| 100 | + # So we have to construct the mask in float |
| 101 | + causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) |
| 102 | + # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) |
| 103 | + scores = scores + causal_mask.to(dtype=scores.dtype) |
| 104 | + attention = torch.softmax(scores, dim=-1) |
| 105 | + attention_drop = F.dropout(attention, dropout_p) |
| 106 | + output = torch.einsum('bhts,bshd->bthd', attention_drop , v) |
| 107 | + return output.to(dtype=q.dtype) |
| 108 | + |
| 109 | + |
| 110 | +def time_fwd_bwd(func, *args, **kwargs): |
| 111 | + time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs) |
| 112 | + return time_f[1].mean, time_b[1].mean |
| 113 | + |
| 114 | + |
| 115 | +repeats = 30 |
| 116 | +device = 'cuda' |
| 117 | +dtype = torch.float16 |
| 118 | + |
| 119 | +bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)] |
| 120 | +causal_vals = [False, True] |
| 121 | +headdim_vals = [64, 128] |
| 122 | +dim = 2048 |
| 123 | +dropout_p = 0.0 |
| 124 | + |
| 125 | +methods = (["fa2_alibi", "torch"] |
| 126 | + + (["xformers"] if xops is not None else []) |
| 127 | + + ["sdpa"] |
| 128 | + + ["fa2_baseline"] |
| 129 | + + ["fa2_rotary"]) |
| 130 | + |
| 131 | +time_f = {} |
| 132 | +time_b = {} |
| 133 | +time_f_b = {} |
| 134 | +speed_f = {} |
| 135 | +speed_b = {} |
| 136 | +speed_f_b = {} |
| 137 | +for causal in causal_vals: |
| 138 | + for headdim in headdim_vals: |
| 139 | + for batch_size, seqlen in bs_seqlen_vals: |
| 140 | + config = (causal, headdim, batch_size, seqlen) |
| 141 | + nheads = dim // headdim |
| 142 | + q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, |
| 143 | + requires_grad=True) for _ in range(3)] |
| 144 | + # alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3 |
| 145 | + alibi_slopes = torch.rand(1, nheads, device=device, dtype=torch.float32) * 0.3 |
| 146 | + attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal).to(dtype) |
| 147 | + attn_bias = repeat(attn_bias, "1 ... -> b ...", b=batch_size) |
| 148 | + f, b = time_fwd_bwd( |
| 149 | + flash_attn_func, |
| 150 | + q, k, v, |
| 151 | + dropout_p, |
| 152 | + causal=causal, |
| 153 | + # alibi_slopes=alibi_slopes, |
| 154 | + alibi_slopes=None, |
| 155 | + repeats=repeats, |
| 156 | + verbose=False |
| 157 | + ) |
| 158 | + time_f[config, "fa2_baseline"] = f |
| 159 | + time_b[config, "fa2_baseline"] = b |
| 160 | + |
| 161 | + q = q.detach().requires_grad_(True) |
| 162 | + k = k.detach().requires_grad_(True) |
| 163 | + v = v.detach().requires_grad_(True) |
| 164 | + f, b = time_fwd_bwd( |
| 165 | + flash_attn_func, |
| 166 | + q, k, v, |
| 167 | + dropout_p, |
| 168 | + causal=causal, |
| 169 | + alibi_slopes=rearrange(alibi_slopes, "1 h -> h"), |
| 170 | + # alibi_slopes=None, |
| 171 | + repeats=repeats, |
| 172 | + verbose=False |
| 173 | + ) |
| 174 | + time_f[config, "fa2_alibi"] = f |
| 175 | + time_b[config, "fa2_alibi"] = b |
| 176 | + |
| 177 | + try: |
| 178 | + q = q.detach().requires_grad_(True) |
| 179 | + k = k.detach().requires_grad_(True) |
| 180 | + v = v.detach().requires_grad_(True) |
| 181 | + f, b = time_fwd_bwd( |
| 182 | + attention_pytorch, |
| 183 | + q, k, v, |
| 184 | + dropout_p, |
| 185 | + causal=causal, |
| 186 | + attn_bias=attn_bias, |
| 187 | + repeats=repeats, |
| 188 | + verbose=False |
| 189 | + ) |
| 190 | + except: # Skip if OOM |
| 191 | + f, b = float('nan'), float('nan') |
| 192 | + time_f[config, "torch"] = f |
| 193 | + time_b[config, "torch"] = b |
| 194 | + |
| 195 | + # F.sdpa doesn't currently (torch 2.1) dispatch to flash-attn but just to be safe |
| 196 | + with torch.backends.cuda.sdp_kernel(enable_flash=False): |
| 197 | + q_pt = q.detach().requires_grad_(True).transpose(1, 2) |
| 198 | + k_pt = k.detach().requires_grad_(True).transpose(1, 2) |
| 199 | + v_pt = v.detach().requires_grad_(True).transpose(1, 2) |
| 200 | + f, b = time_fwd_bwd( |
| 201 | + F.scaled_dot_product_attention, |
| 202 | + q_pt, k_pt, v_pt, |
| 203 | + attn_mask=attn_bias, |
| 204 | + dropout_p=dropout_p, |
| 205 | + is_causal=causal, |
| 206 | + repeats=repeats, |
| 207 | + verbose=False |
| 208 | + ) |
| 209 | + time_f[config, "sdpa"] = f |
| 210 | + time_b[config, "sdpa"] = b |
| 211 | + |
| 212 | + if xops is not None: |
| 213 | + q = q.detach().requires_grad_(True) |
| 214 | + k = k.detach().requires_grad_(True) |
| 215 | + v = v.detach().requires_grad_(True) |
| 216 | + if causal: |
| 217 | + attn_bias_xops = xops.LowerTriangularMask().add_bias(attn_bias.expand(-1, -1, seqlen, -1).to(dtype=q.dtype)) |
| 218 | + # NotImplementedError: No operator found for `memory_efficient_attention_backward` with inputs: |
| 219 | + # `[email protected]` is not supported because: |
| 220 | + # attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'> |
| 221 | + # `cutlassB` is not supported because: |
| 222 | + # attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'> |
| 223 | + attn_bias_xops = attn_bias_xops.materialize((batch_size, nheads, seqlen, seqlen), dtype=q.dtype, device=device) |
| 224 | + else: |
| 225 | + attn_bias_xops = attn_bias.to(dtype=q.dtype) |
| 226 | + f, b = time_fwd_bwd( |
| 227 | + xops.memory_efficient_attention, |
| 228 | + q, k, v, |
| 229 | + attn_bias_xops, |
| 230 | + dropout_p, |
| 231 | + repeats=repeats, |
| 232 | + verbose=False |
| 233 | + ) |
| 234 | + time_f[config, "xformers"] = f |
| 235 | + time_b[config, "xformers"] = b |
| 236 | + |
| 237 | + q = q.detach().requires_grad_(True) |
| 238 | + k = k.detach().requires_grad_(True) |
| 239 | + v = v.detach().requires_grad_(True) |
| 240 | + cos, sin = generate_cos_sin(seqlen, headdim, device, dtype) |
| 241 | + f, b = time_fwd_bwd( |
| 242 | + flash_rotary, |
| 243 | + q, k, v, |
| 244 | + cos, sin, |
| 245 | + causal, |
| 246 | + repeats=repeats, |
| 247 | + verbose=False |
| 248 | + ) |
| 249 | + time_f[config, "fa2_rotary"] = f |
| 250 | + time_b[config, "fa2_rotary"] = b |
| 251 | + |
| 252 | + print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###") |
| 253 | + csv_output = "" |
| 254 | + csv_output += f"{causal},{headdim},{batch_size},{seqlen}," |
| 255 | + for method in methods: |
| 256 | + time_f_b[config, method] = time_f[config, method] + time_b[config, method] |
| 257 | + speed_f[config, method] = efficiency( |
| 258 | + flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"), |
| 259 | + time_f[config, method] |
| 260 | + ) |
| 261 | + speed_b[config, method] = efficiency( |
| 262 | + flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"), |
| 263 | + time_b[config, method] |
| 264 | + ) |
| 265 | + speed_f_b[config, method] = efficiency( |
| 266 | + flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"), |
| 267 | + time_f_b[config, method] |
| 268 | + ) |
| 269 | + print( |
| 270 | + f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, " |
| 271 | + f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, " |
| 272 | + f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s" |
| 273 | + ) |
| 274 | + csv_output += f"{speed_f[config, method]:.2f},{speed_b[config, method]:.2f},{speed_f_b[config, method]:.2f}," |
| 275 | + print(csv_output) |
0 commit comments