Skip to content

Commit 357f3e9

Browse files
authored
chore: Fix header levels in feature retrieval page (feast-dev#3225)
Signed-off-by: Danny Chiao <[email protected]> Signed-off-by: Danny Chiao <[email protected]>
1 parent a63d440 commit 357f3e9

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

docs/getting-started/concepts/feature-retrieval.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -180,15 +180,15 @@ Feast accepts either:
180180
- [feature services](feature-retrieval.md#feature-services), which group features needed for a model version
181181
- [feature references](feature-retrieval.md#feature-references)
182182

183-
### Example: querying a feature service (recommended)
183+
#### Example: querying a feature service (recommended)
184184
```python
185185
training_df = store.get_historical_features(
186186
entity_df=entity_df,
187187
features=store.get_feature_service("model_v1"),
188188
).to_df()
189189
```
190190

191-
### Example: querying a list of feature references
191+
#### Example: querying a list of feature references
192192
```python
193193
training_df = store.get_historical_features(
194194
entity_df=entity_df,
@@ -204,7 +204,7 @@ Feast accepts either a **Pandas dataframe** as the entity dataframe (including e
204204

205205
Both approaches must specify the full **entity key** needed as well as the **timestamps**. Feast then joins features onto this dataframe.
206206

207-
### Example: entity dataframe for generating training data
207+
#### Example: entity dataframe for generating training data
208208
```python
209209
entity_df = pd.DataFrame.from_dict(
210210
{
@@ -228,7 +228,7 @@ training_df = store.get_historical_features(
228228
).to_df()
229229
```
230230

231-
### Example: entity SQL query for generating training data
231+
#### Example: entity SQL query for generating training data
232232
You can also pass a SQL string to generate the above dataframe. This is useful for getting all entities in a timeframe from some data source.
233233

234234
```python

0 commit comments

Comments
 (0)