|
| 1 | +#coding:utf-8 |
| 2 | +#Author:codewithzichao |
| 3 | + |
| 4 | + |
| 5 | +''' |
| 6 | +数据集:Mnist数据集(只使用了1000来训练,只使用了1000来测试。) |
| 7 | +结果(准确率):0.738 |
| 8 | +时间:28.6643168926239 |
| 9 | +''' |
| 10 | +import numpy as np |
| 11 | +import time |
| 12 | + |
| 13 | +def loadData(fileName): |
| 14 | + ''' |
| 15 | + 加载数据 |
| 16 | + :param fileName: 数据路径 |
| 17 | + :return: 返回特征向量与标签类别 |
| 18 | + ''' |
| 19 | + data_list=[] |
| 20 | + label_list=[] |
| 21 | + |
| 22 | + with open(fileName,"r") as f: |
| 23 | + for line in f.readlines(): |
| 24 | + curline=line.strip().split(",") |
| 25 | + |
| 26 | + data_list.append([int(feature) for feature in curline[1:]]) |
| 27 | + label_list.append(int(curline[0])) |
| 28 | + |
| 29 | + data_matrix=np.array(data_list) |
| 30 | + label_matrix=np.array(label_list) |
| 31 | + |
| 32 | + return data_matrix,label_matrix |
| 33 | + |
| 34 | +class KNN(object): |
| 35 | + def __init__(self,train_data,train_label,K): |
| 36 | + ''' |
| 37 | + 构造函数 |
| 38 | + :param train_data: 训练集的特征向量 |
| 39 | + :param train_label: 训练集的类别向量 |
| 40 | + :param K: 指定的K值 |
| 41 | + ''' |
| 42 | + self.train_data=train_data |
| 43 | + self.train_label=train_label |
| 44 | + self.input_num=self.train_data.shape[0] |
| 45 | + self.feature=self.train_data.shape[1] |
| 46 | + self.K=K |
| 47 | + |
| 48 | + def cal_distance(self,x1,x2): |
| 49 | + ''' |
| 50 | + 计算两个样本之间的距离,使用欧式距离 |
| 51 | + :param x1: 第一个样本 |
| 52 | + :param x2: 第二步样本 |
| 53 | + :return: 样本之间的距离 |
| 54 | + ''' |
| 55 | + return np.sqrt(np.sum(np.square(x1-x2))) |
| 56 | + |
| 57 | + def get_K(self,x): |
| 58 | + dist_group=np.zeros(self.input_num) |
| 59 | + for i in range(self.input_num): |
| 60 | + x1=self.train_data[i] |
| 61 | + dist=self.cal_distance(x,x1) |
| 62 | + dist_group[i]=dist |
| 63 | + |
| 64 | + topK=np.argsort(dist_group)[:self.K]#升序排序 |
| 65 | + |
| 66 | + labeldist=np.zeros(10)#10个标签,在每一个标签对应的位置上加1 |
| 67 | + |
| 68 | + for i in range(len(topK)): |
| 69 | + labeldist[int(self.train_label[topK[i]])]+=1 |
| 70 | + |
| 71 | + return np.argmax(labeldist) |
| 72 | + |
| 73 | + def test(self,test_data,test_label): |
| 74 | + ''' |
| 75 | + 在测试集上测试 |
| 76 | + :param test_data: 测试集的特征向量 |
| 77 | + :param test_label: 测试集的标签向量 |
| 78 | + :return: 准确率 |
| 79 | + ''' |
| 80 | + error=0 |
| 81 | + |
| 82 | + test_num=test_data.shape[0] |
| 83 | + for i in range(test_num): |
| 84 | + print(f"the current sample is {i+1},the total samples is{test_num}.") |
| 85 | + x=test_data[i] |
| 86 | + y=self.get_K(x) |
| 87 | + |
| 88 | + if(y!=test_label[i]): |
| 89 | + error+=1 |
| 90 | + |
| 91 | + accuracy=(test_num-error)/test_num |
| 92 | + return accuracy |
| 93 | + |
| 94 | +if __name__=="__main__": |
| 95 | + start=time.time() |
| 96 | + |
| 97 | + print("start load data.") |
| 98 | + train_data,train_label=loadData("../MnistData/mnist_train.csv") |
| 99 | + test_data,test_label=loadData("../MnistData/mnist_test.csv") |
| 100 | + print("finished load data.") |
| 101 | + |
| 102 | + a=KNN(train_data[:1000],train_label[:1000],30) |
| 103 | + |
| 104 | + print("finished training.") |
| 105 | + |
| 106 | + accuracy=a.test(test_data[:1000],test_label[:1000]) |
| 107 | + print(f"the accuracy is {accuracy}.") |
| 108 | + |
| 109 | + end=time.time() |
| 110 | + |
| 111 | + print(f"the total time is {end-start}.") |
| 112 | + |
| 113 | + |
0 commit comments