|
1 | 1 | # 209 - Minimum Size Subarray Sum |
2 | 2 |
|
| 3 | +## 题目 |
| 4 | + |
| 5 | +给定一个含有 `n` 个正整数的数组和一个正整数 `s` ,找出该数组中满足其和 `≥s` 的长度最小的连续子数组。如果不存在符合条件的连续子数组,返回 `0` 。 |
| 6 | + |
| 7 | +示例: |
| 8 | + |
| 9 | +``` |
| 10 | +输入: s = 7, nums = [2,3,1,2,4,3] |
| 11 | +输出: 2 |
| 12 | +解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。 |
| 13 | +``` |
| 14 | + |
| 15 | +进阶: |
| 16 | + |
| 17 | +如果你已经完成了 `O(n)` 时间复杂度的解法, 请尝试 `O(n log n)` 时间复杂度的解法。 |
| 18 | + |
| 19 | +## Solution 1 |
| 20 | + |
| 21 | +> 时间复杂度O(n) |
| 22 | +
|
| 23 | +定义2个指针 `left` 和 `right` 指针: |
| 24 | + |
| 25 | +1. `right` 先右移,直到第一次满足 `sum≥s` |
| 26 | + |
| 27 | +2. `left` 开始右移,直到第一次满足 `sum < s` |
| 28 | + |
| 29 | +重复上面的步骤,直到 right 到达末尾,且 left 到达临界位置,即要么到达边界,要么再往右移动,和就会小于给定值。 |
| 30 | + |
3 | 31 | ``` |
4 | | -class Solution { |
5 | | -public: |
6 | | - int minSubArrayLen(int s, vector<int>& nums) { |
7 | | - int windowSum = 0, windowStart = 0; |
8 | | - int minWindowSize = numeric_limits<int>::max(); |
9 | | -
|
10 | | - for(int windowEnd=0; windowEnd<nums.size(); windowEnd++) { |
11 | | - windowSum += nums[windowEnd]; |
12 | | -
|
13 | | - while(windowSum >= s) { |
14 | | - minWindowSize = min(minWindowSize, windowEnd-windowStart+1); |
15 | | - windowSum -= nums[windowStart]; |
16 | | - windowStart++; |
17 | | - } |
| 32 | +public static int solution(int s, int[] nums) { |
| 33 | + int left = 0, sum = 0, minLength = Integer.MAX_VALUE; |
| 34 | + for (int right = 0; right < nums.length; right++) { |
| 35 | + sum += nums[right]; |
| 36 | + while (sum >= s) { |
| 37 | + minLength = Math.min(minLength, right - left + 1); |
| 38 | + sum -= nums[left++]; |
18 | 39 | } |
| 40 | + } |
| 41 | + return minLength == Integer.MAX_VALUE ? 0 : minLength; |
| 42 | +} |
| 43 | +``` |
| 44 | + |
| 45 | +## Solution 2 |
| 46 | + |
| 47 | +> 时间复杂度 O(nlogn) |
19 | 48 |
|
20 | | - return minWindowSize == numeric_limits<int>::max() ? 0 : minWindowSize; |
| 49 | +1. 建立一个比原数组长一位的 `sum` 数组,其中 `sum[i]` 表示 `nums` 数组中 `[0, i - 1]` 的和 |
| 50 | + |
| 51 | +2. 对于 `sum` 中每一个值 `sum[i]`,用二分查找法找到子数组的右边界位置,使该子数组之和大于 `sum[i] + s`,然后更新最短长度的距离 |
| 52 | + |
| 53 | +``` |
| 54 | +public static int solution2(int s, int[] nums) { |
| 55 | + int[] sum = new int[nums.length]; |
| 56 | + int minLength = Integer.MAX_VALUE; |
| 57 | + if (nums.length != 0) { |
| 58 | + sum[0] = nums[0]; |
| 59 | + } |
| 60 | + for (int i = 1; i < nums.length; i++) { |
| 61 | + sum[i] = sum[i - 1] + nums[i]; |
| 62 | + } |
| 63 | + for (int i = 0; i < nums.length; i++) { |
| 64 | + if (sum[i] >= s) { |
| 65 | + minLength = Math.min(minLength, i - binarySearchLastIndexNotBiggerThanTarget(0, i, sum[i] - s, sum)); |
| 66 | + } |
| 67 | + } |
| 68 | + return minLength == Integer.MAX_VALUE ? 0 : minLength; |
| 69 | +} |
| 70 | +
|
| 71 | +static int binarySearchLastIndexNotBiggerThanTarget(int left, int right, int target, int[] sum) { |
| 72 | + while (left <= right) { |
| 73 | + int mid = (left + right) >> 1; |
| 74 | + if (sum[mid] > target) { |
| 75 | + right = mid - 1; |
| 76 | + } else { |
| 77 | + left = mid + 1; |
| 78 | + } |
21 | 79 | } |
22 | | -}; |
| 80 | + return right; |
| 81 | +} |
23 | 82 | ``` |
0 commit comments