@@ -55,14 +55,14 @@ In our default setting, pretrained models and their corresponding [original mode
5555
5656### ADE20K
5757
58- | Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
59- | ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
60- | UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | V100 | 44.41 | 45.79 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/master /configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json ) |
61- | UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | V100 | 47.72 | 49.24 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/master /configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json ) |
62- | UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | V100 | 47.99 | 49.57 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/master /configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json ) |
63- | UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | V100 | 50.13 | 51.9 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/master /configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json ) |
64- | UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | V100 | 48.35 | 49.65 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/master /configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json ) |
65- | UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | V100 | 50.76 | 52.4 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/master /configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json ) |
58+ | Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
59+ | ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
60+ | UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | V100 | 44.41 | 45.79 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/main /configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json ) |
61+ | UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | V100 | 47.72 | 49.24 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/main /configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json ) |
62+ | UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | V100 | 47.99 | 49.57 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/main /configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json ) |
63+ | UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | V100 | 50.13 | 51.9 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/main /configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json ) |
64+ | UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | V100 | 48.35 | 49.65 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/main /configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json ) |
65+ | UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | V100 | 50.76 | 52.4 | [ config] ( https://github.com/open-mmlab/mmsegmentation/blob/main /configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py ) | [ model] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth ) \| [ log] ( https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json ) |
6666
6767## Citation
6868
0 commit comments