1111
1212
1313class myCallback (tf .keras .callbacks .Callback ):
14- """
14+ """
1515 User can pass on the desired accuracy threshold while creating an instance of the class
1616 """
1717
18- def __init__ (self , acc_threshold = 0.9 , print_msg = True ):
18+ def __init__ (self , acc_threshold = 0.9 , print_msg = True ):
1919 self .acc_threshold = acc_threshold
2020 self .print_msg = print_msg
2121
22- def on_epoch_end (self , epoch , logs = {}):
22+ def on_epoch_end (self , epoch , logs = {}):
2323 if logs .get ("acc" ) > self .acc_threshold :
2424 if self .print_msg :
25- print ("\n Reached {}% accuracy so cancelling the training!" .format (self .acc_threshold ))
25+ print (
26+ "\n Reached {}% accuracy so cancelling the training!" .format (
27+ self .acc_threshold
28+ )
29+ )
2630 self .model .stop_training = True
2731 else :
2832 if self .print_msg :
2933 print ("\n Accuracy not high enough. Starting another epoch...\n " )
3034
31-
32- def build_classification_model (
33- num_layers = 1 ,
34- architecture = [32 ],
35- act_func = "relu" ,
36- input_shape = (28 , 28 ),
37- output_class = 10 ,
38- ):
39- """
35+ def build_classification_model (
36+ num_layers = 1 ,
37+ architecture = [32 ],
38+ act_func = "relu" ,
39+ input_shape = (28 , 28 ),
40+ output_class = 10 ,
41+ ):
42+ """
4043 Builds a densely connected neural network model from user input
4144
4245 Arguments
@@ -48,20 +51,20 @@ def build_classification_model(
4851 Returns
4952 A neural net (Keras) model for classification
5053 """
51- layers = [tf .keras .layers .Flatten (input_shape = input_shape )]
52- if act_func == "relu" :
53- activation = tf .nn .relu
54- elif act_func == "sigmoid" :
55- activation = tf .nn .sigmoid
56- elif act_func == "tanh" :
57- activation = tf .nn .tanh
58-
59- for i in range (num_layers ):
60- layers .append (tf .keras .layers .Dense (architecture [i ], activation = tf .nn .relu ))
61- layers .append (tf .keras .layers .Dense (output_class , activation = tf .nn .softmax ))
62-
63- model = tf .keras .models .Sequential (layers )
64- return model
54+ layers = [tf .keras .layers .Flatten (input_shape = input_shape )]
55+ if act_func == "relu" :
56+ activation = tf .nn .relu
57+ elif act_func == "sigmoid" :
58+ activation = tf .nn .sigmoid
59+ elif act_func == "tanh" :
60+ activation = tf .nn .tanh
61+
62+ for i in range (num_layers ):
63+ layers .append (tf .keras .layers .Dense (architecture [i ], activation = tf .nn .relu ))
64+ layers .append (tf .keras .layers .Dense (output_class , activation = tf .nn .softmax ))
65+
66+ model = tf .keras .models .Sequential (layers )
67+ return model
6568
6669
6770def build_regression_model (
0 commit comments