@@ -59,8 +59,10 @@ class BaseLibSVM(six.with_metaclass(ABCMeta, BaseEstimator)):
5959
6060 Parameter documentation is in the derived `SVC` class.
6161 """
62- # see ./classes.py for SVC class.
6362
63+ # The order of these must match the integer values in LibSVM.
64+ # XXX These are actually the same in the dense case. Need to factor
65+ # this out.
6466 _sparse_kernels = ["linear" , "poly" , "rbf" , "sigmoid" , "precomputed" ]
6567
6668 @abstractmethod
@@ -291,13 +293,10 @@ def _dense_predict(self, X):
291293
292294 return libsvm .predict (
293295 X , self .support_ , self .support_vectors_ , self .n_support_ ,
294- self .dual_coef_ , self ._intercept_ ,
295- self ._label , self .probA_ , self .probB_ ,
296- svm_type = svm_type ,
297- kernel = kernel , C = C , nu = self .nu ,
298- probability = self .probability , degree = self .degree ,
299- shrinking = self .shrinking , tol = self .tol , cache_size = self .cache_size ,
300- coef0 = self .coef0 , gamma = self ._gamma , epsilon = self .epsilon )
296+ self .dual_coef_ , self ._intercept_ , self ._label ,
297+ self .probA_ , self .probB_ , svm_type = svm_type , kernel = kernel ,
298+ degree = self .degree , coef0 = self .coef0 , gamma = self ._gamma ,
299+ cache_size = self .cache_size )
301300
302301 def _sparse_predict (self , X ):
303302 X = sp .csr_matrix (X , dtype = np .float64 )
@@ -354,8 +353,6 @@ def decision_function(self, X):
354353 X = self ._validate_for_predict (X )
355354 X = self ._compute_kernel (X )
356355
357- C = 0.0 # C is not useful here
358-
359356 kernel = self .kernel
360357 if callable (kernel ):
361358 kernel = 'precomputed'
@@ -365,10 +362,8 @@ def decision_function(self, X):
365362 self .dual_coef_ , self ._intercept_ , self ._label ,
366363 self .probA_ , self .probB_ ,
367364 svm_type = LIBSVM_IMPL .index (self ._impl ),
368- kernel = kernel , C = C , nu = self .nu ,
369- probability = self .probability , degree = self .degree ,
370- shrinking = self .shrinking , tol = self .tol , cache_size = self .cache_size ,
371- coef0 = self .coef0 , gamma = self ._gamma , epsilon = self .epsilon )
365+ kernel = kernel , degree = self .degree , cache_size = self .cache_size ,
366+ coef0 = self .coef0 , gamma = self ._gamma )
372367
373368 # In binary case, we need to flip the sign of coef, intercept and
374369 # decision function.
@@ -539,10 +534,8 @@ def _dense_predict_proba(self, X):
539534 X , self .support_ , self .support_vectors_ , self .n_support_ ,
540535 self .dual_coef_ , self ._intercept_ , self ._label ,
541536 self .probA_ , self .probB_ ,
542- svm_type = svm_type , kernel = kernel , C = C , nu = self .nu ,
543- probability = self .probability , degree = self .degree ,
544- shrinking = self .shrinking , tol = self .tol , cache_size = self .cache_size ,
545- coef0 = self .coef0 , gamma = self ._gamma , epsilon = self .epsilon )
537+ svm_type = svm_type , kernel = kernel , degree = self .degree ,
538+ cache_size = self .cache_size , coef0 = self .coef0 , gamma = self ._gamma )
546539
547540 return pprob
548541
0 commit comments