@@ -456,6 +456,10 @@ class Ridge(_BaseRidge, RegressorMixin):
456456 coef_ : array, shape = [n_features] or [n_targets, n_features]
457457 Weight vector(s).
458458
459+ intercept_ : float | array, shape = (n_targets,)
460+ Independent term in decision function. Set to 0.0 if
461+ ``fit_intercept = False``.
462+
459463 See also
460464 --------
461465 RidgeClassifier, RidgeCV, KernelRidge
@@ -554,6 +558,10 @@ class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
554558 coef_ : array, shape = [n_features] or [n_classes, n_features]
555559 Weight vector(s).
556560
561+ intercept_ : float | array, shape = (n_targets,)
562+ Independent term in decision function. Set to 0.0 if
563+ ``fit_intercept = False``.
564+
557565 See also
558566 --------
559567 Ridge, RidgeClassifierCV
@@ -875,7 +883,7 @@ def fit(self, X, y, sample_weight=None):
875883 raise ValueError ("cv!=None and store_cv_values=True "
876884 " are incompatible" )
877885 parameters = {'alpha' : self .alphas }
878- fit_params = {'sample_weight' : sample_weight }
886+ fit_params = {'sample_weight' : sample_weight }
879887 gs = GridSearchCV (Ridge (fit_intercept = self .fit_intercept ),
880888 parameters , fit_params = fit_params , cv = self .cv )
881889 gs .fit (X , y )
@@ -957,13 +965,13 @@ class RidgeCV(_BaseRidgeCV, RegressorMixin):
957965 coef_ : array, shape = [n_features] or [n_targets, n_features]
958966 Weight vector(s).
959967
960- alpha_ : float
961- Estimated regularization parameter.
962-
963968 intercept_ : float | array, shape = (n_targets,)
964969 Independent term in decision function. Set to 0.0 if
965970 ``fit_intercept = False``.
966971
972+ alpha_ : float
973+ Estimated regularization parameter.
974+
967975 See also
968976 --------
969977 Ridge: Ridge regression
@@ -1028,6 +1036,10 @@ class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
10281036 coef_ : array, shape = [n_features] or [n_targets, n_features]
10291037 Weight vector(s).
10301038
1039+ intercept_ : float | array, shape = (n_targets,)
1040+ Independent term in decision function. Set to 0.0 if
1041+ ``fit_intercept = False``.
1042+
10311043 alpha_ : float
10321044 Estimated regularization parameter
10331045
0 commit comments