|
1 | | -from dataset import Dataset |
2 | | -import os |
3 | | -import time |
4 | | -import numpy as np |
5 | | -import json |
6 | | -import nltk |
7 | | -import array |
8 | | -import torch |
9 | | -from torch.nn.functional import pad |
10 | | -from torch.utils.data import DataLoader |
11 | | -import evaluate |
12 | | -import argparse |
13 | | -import nltk |
14 | | -from transformers import AutoModelForCausalLM, AutoTokenizer |
15 | | - |
16 | | - |
17 | | -def get_args(): |
18 | | - """Parse commandline.""" |
19 | | - parser = argparse.ArgumentParser() |
20 | | - parser.add_argument("--mlperf-accuracy-file", required=True, help="path to mlperf_log_accuracy.json") |
21 | | - parser.add_argument("--dataset-file", required=True, help="path to cnn_eval.json") |
22 | | - parser.add_argument("--verbose", action="store_true", help="verbose messages") |
23 | | - args = parser.parse_args() |
24 | | - return args |
25 | | - |
26 | | -def postprocess_text(preds, targets): |
27 | | - preds = [pred.strip() for pred in preds] |
28 | | - targets = [target.strip() for target in targets] |
29 | | - |
30 | | - # rougeLSum expects newline after each sentence |
31 | | - preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] |
32 | | - targets = ["\n".join(nltk.sent_tokenize(target)) for target in targets] |
33 | | - |
34 | | - return preds, targets |
35 | | - |
36 | | - |
37 | | -def main(): |
38 | | - |
39 | | - args = get_args() |
40 | | - model_name = "EleutherAI/gpt-j-6B" |
41 | | - dataset_path = args.dataset_file |
42 | | - metric = evaluate.load("rouge") |
43 | | - nltk.download('punkt') |
44 | | - |
45 | | - tokenizer = AutoTokenizer.from_pretrained( |
46 | | - model_name, |
47 | | - model_max_length=2048, |
48 | | - padding_side="left", |
49 | | - use_fast=False,) |
50 | | - tokenizer.pad_token = tokenizer.eos_token |
51 | | - |
52 | | - data_object = Dataset(dataset_path) |
53 | | - |
54 | | - targets = data_object.targets |
55 | | - |
56 | | - |
57 | | - |
58 | | - |
59 | | - with open(args.mlperf_accuracy_file, "r") as f: |
60 | | - results = json.load(f) |
61 | | - |
62 | | - |
63 | | - target_required = [] |
64 | | - preds_token_ids = [] |
65 | | - |
66 | | - for pred in results: |
67 | | - qsl_idx = pred['qsl_idx'] |
68 | | - target = targets[qsl_idx] |
69 | | - target_required.append(target) |
70 | | - preds_token_ids.append(np.frombuffer(bytes.fromhex(pred['data']), np.int64)) |
71 | | - |
72 | | - |
73 | | - preds_decoded_text = tokenizer.batch_decode(preds_token_ids, skip_special_tokens=True) |
74 | | - |
75 | | - preds, targets = postprocess_text(preds_decoded_text, target_required) |
76 | | - |
77 | | - |
78 | | - result = metric.compute(predictions=preds, references=targets, use_stemmer=True,use_aggregator=False) |
79 | | - result = {k: round(np.mean(v) * 100, 4) for k, v in result.items()} |
80 | | - prediction_lens = [len(pred) for pred in preds] |
81 | | - result["gen_len"] = np.sum(prediction_lens) |
82 | | - result["gen_num"] = len(preds) |
83 | | - print("\nResults\n") |
84 | | - print(result) |
85 | | - |
86 | | -if __name__ == "__main__": |
87 | | - main() |
| 1 | +from dataset import Dataset |
| 2 | +import os |
| 3 | +import time |
| 4 | +import numpy as np |
| 5 | +import json |
| 6 | +import nltk |
| 7 | +import array |
| 8 | +import torch |
| 9 | +from torch.nn.functional import pad |
| 10 | +from torch.utils.data import DataLoader |
| 11 | +import evaluate |
| 12 | +import argparse |
| 13 | +import nltk |
| 14 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 15 | + |
| 16 | + |
| 17 | +def get_args(): |
| 18 | + """Parse commandline.""" |
| 19 | + parser = argparse.ArgumentParser() |
| 20 | + parser.add_argument("--mlperf-accuracy-file", required=True, |
| 21 | + help="path to mlperf_log_accuracy.json") |
| 22 | + parser.add_argument("--dataset-file", required=True, |
| 23 | + help="path to cnn_eval.json") |
| 24 | + parser.add_argument("--verbose", action="store_true", |
| 25 | + help="verbose messages") |
| 26 | + parser.add_argument("--dtype", default="int64", |
| 27 | + help="dtype of the accuracy log", choices=["int32", "int64"]) |
| 28 | + args = parser.parse_args() |
| 29 | + return args |
| 30 | + |
| 31 | + |
| 32 | +def postprocess_text(preds, targets): |
| 33 | + preds = [pred.strip() for pred in preds] |
| 34 | + targets = [target.strip() for target in targets] |
| 35 | + |
| 36 | + # rougeLSum expects newline after each sentence |
| 37 | + preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] |
| 38 | + targets = ["\n".join(nltk.sent_tokenize(target)) for target in targets] |
| 39 | + |
| 40 | + return preds, targets |
| 41 | + |
| 42 | + |
| 43 | +def main(): |
| 44 | + |
| 45 | + args = get_args() |
| 46 | + model_name = "EleutherAI/gpt-j-6B" |
| 47 | + dataset_path = args.dataset_file |
| 48 | + metric = evaluate.load("rouge") |
| 49 | + nltk.download('punkt') |
| 50 | + |
| 51 | + tokenizer = AutoTokenizer.from_pretrained( |
| 52 | + model_name, |
| 53 | + model_max_length=2048, |
| 54 | + padding_side="left", |
| 55 | + use_fast=False,) |
| 56 | + tokenizer.pad_token = tokenizer.eos_token |
| 57 | + |
| 58 | + data_object = Dataset(dataset_path) |
| 59 | + |
| 60 | + targets = data_object.targets |
| 61 | + |
| 62 | + with open(args.mlperf_accuracy_file, "r") as f: |
| 63 | + results = json.load(f) |
| 64 | + |
| 65 | + target_required = [] |
| 66 | + preds_token_ids = [] |
| 67 | + |
| 68 | + eval_dtype = np.int64 |
| 69 | + if args.dtype == "int32": |
| 70 | + eval_dtype = np.int32 |
| 71 | + |
| 72 | + for pred in results: |
| 73 | + qsl_idx = pred['qsl_idx'] |
| 74 | + target = targets[qsl_idx] |
| 75 | + target_required.append(target) |
| 76 | + preds_token_ids.append(np.frombuffer( |
| 77 | + bytes.fromhex(pred['data']), eval_dtype)) |
| 78 | + |
| 79 | + preds_decoded_text = tokenizer.batch_decode( |
| 80 | + preds_token_ids, skip_special_tokens=True) |
| 81 | + |
| 82 | + preds, targets = postprocess_text(preds_decoded_text, target_required) |
| 83 | + |
| 84 | + result = metric.compute( |
| 85 | + predictions=preds, references=targets, use_stemmer=True, use_aggregator=False) |
| 86 | + result = {k: round(np.mean(v) * 100, 4) for k, v in result.items()} |
| 87 | + prediction_lens = [len(pred) for pred in preds] |
| 88 | + result["gen_len"] = np.sum(prediction_lens) |
| 89 | + result["gen_num"] = len(preds) |
| 90 | + print("\nResults\n") |
| 91 | + print(result) |
| 92 | + |
| 93 | + |
| 94 | +if __name__ == "__main__": |
| 95 | + main() |
0 commit comments